
The Corosync Cluster Engine

Steven C. Dake
Red Hat, Inc.

sdake@redhat.com

Christine Caulfield
Red Hat, Inc.

ccaulfie@redhat.com

Andrew Beekhof
Novell, Inc.

abeekhof@suse.de

Abstract

A common cluster infrastructure called the Corosync
Cluster Engine is presented. The rationale for this ef-
fort as well as a history of the project are provided. The
architecture is described in detail. The internal program-
ming API is presented to provide developers with a basic
understanding of the programming model to architec-
ture mapping. Finally, examples of open source projects
using the Corosync Cluster Engine are provided.

1 Introduction

The Corosync Cluster Engine [Corosync] Team has
designed and implemented the Corosync Cluster En-
gine to meet logistical needs of the cluster commu-
nity. Some members of the cluster developer commu-
nity have strong desires to reduce technology and com-
munity fragmentation.

Technology fragmentation results in difficulty with in-
teroperability. Different project clustering systems do
not inter-operate well because they each make decisions
regarding the state of the cluster in inconsistent ways.
Each cluster software may take different approaches to
managing failures, communicating, reading configura-
tion files, determining cluster membership, or recover-
ing from failures.

Community fragmentation results in dispersal of devel-
oper talent across many different projects. Most projects
have a very small set of developers. These developers
in the past have not worked on the same infrastructure
but instead implement code with similar functionality.
This software is then is deployed in various cluster sys-
tems and must be maintained and developed by individ-
ual projects.

The Corosync Cluster Engine resolves these issues by
separating the core infrastructure from the cluster ser-
vices. By making this abstraction, all cluster services

can cooperate on decision making in the cluster. This
abstraction also unifies the core code base under one
open source group with the purpose to maintain, de-
velop, and direct a reusable cluster infrastructure with
an OSI-approved license.

2 History

The Corosync Cluster Engine was founded in January
2008 as a reduction of the OpenAIS project. The cluster
infrastructure primitives are reduced from the Service
Availability Forum Application Interface Specification
APIs into a new project. This effort was spawned by
various maintainers of cluster projects to improve inter-
operability and unify developer talent.

The OpenAIS project was founded in January 2002 to
implement Service Availability Forum Application In-
terface Specification APIs [SaForumAIS]. These APIs
are designed to provide an application framework for
high availability using clustering techniques to reduce
MTTR [Dake05]. During the development of OpenAIS,
more development time was spent on the infrastructure
than the APIs. As a result of the focus on the infrastruc-
ture, a completely reusable plug-in based Cluster Engine
was created.

3 Architecture

3.1 Overview

Corosync Cluster Engine clusters are composed of pro-
cessors connected by an interconnect. This paper de-
fines an interconnect as a physical communication sys-
tem which allows for multicast or broadcast operation
to communicate packets of information. This paper de-
fines a processor as a common computer, including a
CPU, memory, network interface chip, physical storage
and operating system such as Linux. This type of cluster
is commonly referred to as a shared-nothing cluster.

• 85 •

86 • The Corosync Cluster Engine

Live Component Replacement

Handle Database Manager

Timers

The Totem Stack

IPC Manager

Service Manager

Synchronization Engine

Object Database

Logging System

Service Engines

Configuration Engines

Figure 1: Corosync Cluster Engine Architecture

The Corosync Cluster Engine supports a fully compo-
nentized plug-in architecture. Every component of the
Corosync Cluster Engine can be replaced by a different
component providing the same functionality at proces-
sor start time.

Figure 1 depicts the architecture of the Corosync Cluster
Engine process.

The subsections in this paper are organized by depen-
dency, not importance. Every component used in the
Corosync Cluster Engine is critical to creating a cluster
software engine.

3.2 Handle Database Manager

The handle database manager provides a reference
counting database that maps in O1 order a unique 64-
bit handle identifier to a memory address. This mapping
can then be used by libraries or other components of the
Corosync Cluster Engine to map addresses to 64-bit val-
ues.

The handle database supports the creation and destruc-
tion of new entries in the database. Finally, mechanisms
exist to obtain a reference to the object database entry
and release the reference.

struct iface {
void (*func1) (void);
void (*func2) (void);
void (*func3) (void);

};

/*
* Reference version 0 of A and B interfaces

*/
res = lcr_ifact_reference (
&a_ifact_handle_ver0,
"A_iface1",
0, /* version 0 */
&a_iface_ver0_p,
(void *)0xaaaa0000);

a_iface_ver0 = (struct iface *)a_iface_ver0_p;

res = lcr_ifact_reference (
&b_ifact_handle_ver0,
"B_iface1",
0, /* version 0 */
&b_iface_ver0_p,
(void *)0xbbbb0000);

b_iface_ver0 = (struct iface *)b_iface_ver0_p;

a_iface_ver0->func1();
a_iface_ver0->func2();
a_iface_ver0->func3();

lcr_ifact_release (a_ifact_handle_ver0);

b_iface_ver0->func1();
b_iface_ver0->func2();
b_iface_ver0->func3();

lcr_ifact_release (b_ifact_handle_ver0);

Figure 2: Example of using multiple interfaces in one
application

Garbage collection occurs automatically and a user-
supplied callback may be called when the reference
count for a handle reaches zero to execute destruction
of the handle information.

3.3 Live Component Replacement

Live Component Replacement is the plug-in system
used by the Corosync Cluster Engine. Every compo-
nent in the engine is an LCR object which is loaded dy-
namically. LCR objects are designed to be replaceable
at runtime, although this feature is not yet fully imple-
mented.

2008 Linux Symposium, Volume One • 87

The LCR plug-in system is different from all other plug-
in systems in that a complete C interface is plugged into
the process address space, instead of simply one func-
tion call. Figure 2 demonstrates the use of the LCR sys-
tem.

LCR objects are linked statically or dynamically. When
an interface is referenced, an internal storage area is
checked to see if the object has been linked statically.
If it has been linked statically, a reference will be given
to the user. If it isn’t found in the internal storage area,
the lcrso directory on the storage medium will be
scanned for a matching interface. If it is found it will
be loaded and referenced to the user; otherwise, an error
is returned.

The live component replacement plug-in system is used
extensively throughout the Corosync Cluster Engine to
provide dynamic run-time loading of interfaces.

3.4 Object Database

The object database provides an in-memory non-
persistent storage mechanism for the configuration en-
gines and service engines.

The object database is a collection of objects. Every ob-
ject has a name and is stored in a tree-like structure. Ev-
ery object has a parent. Within objects are key and value
pairs which are unique to the object. Figure 3 depicts a
partial object database layout.

The object database provides an API for the creation,
deletion, and searching for objects. The database also
provides mechanisms to read and write key and value
pairs. Finally, the database provides a mechanism to
find objects, iterate objects within a tree, and iterate keys
within an object.

Objects have specific requirements. The object database
allows multiple objects with the same name to be stored
in the database with the same parent. Every object may
contain key and value pairs. An object’s key is unique
and its value is a binary blob of data.

Because the object database is often used in parsing by
the configuration engine, a special API is provided to
automatically detect failures in the storing of keys and
associated values within an object. On object creation,
a list of valid keys for that object can be registered as
well as a validation callback for each key. If the user

token,1000

PARENT

KEY,VALUEObject

Totem

fail_to_recv,30

name,ckptServices

ver,0

MOREKEYS,VALUE

DIAGRAM KEY

Figure 3: Typical Object Database Layout

of the API specifies an invalid key when modifying an
object within the object database, the modification re-
quest will be rejected with an error. When the key is
valid, before the key is modified, the validation callback
is called. This validation callback verifies the contents
of the value using the user-registered callback. If the
callback returns an invalid value, the modification re-
quest is rejected.

3.5 Logging System

A common logging system is available to service en-
gines as well as the rest of the Corosync Cluster Engine
software stack. The logging system is completely non-
blocking and uses a separate thread in the process ad-
dress space to filter and output logging information. The
logging system is a generically reusable library avail-
able to third-party processes as well as service engines.
In the case that multiple service engines use the logging
system, only one thread is created by the Corosync Clus-
ter Engine.

The logging system supports logging with complete
printf() style argument processing. Information may
be printed to stderr, a file, and/or syslog.

88 • The Corosync Cluster Engine

A logging system may contain any number of compo-
nents, called tags, which allow runtime filtering of de-
bug messages and 8 levels of tracing messages to the
logging output medium. Each tracing type may be sepa-
rately filtered so specific trace numbers may be used for
specific functionality.

A unique feature of the logging system is that a logging
system and logging components are initialized through a
constructor definition at the beginning of the C code for
the file. The configuration options may also be changed
at runtime. Additionally, the logging system supports
the fork() system call.

3.6 Timers

Nearly every service engine requires the use of timers,
so a timer system is provided. Time is represents in
nanoseconds since the epoch, or January 1, 1970.

Timers may be set to expire at an absolute time. Another
type of timer allows expiration in a certain number of
nanoseconds into the future.

When a timer expires, it executes a callback registered
at timer creation time to execute software code desired
by the service engine designer.

3.7 The Totem Stack

The Totem Single Ring Ordering and Membership Pro-
tocol [Amir95] implements a totally ordered extended
virtual synchrony communication model [Moser94].
Unlike many typical communication systems, the ex-
tended virtual synchrony model requires that every pro-
cessor agrees upon the order of messages and member-
ship changes, and that those messages are completely
recovered.

A property of virtual synchrony, called agreed order-
ing, allows for simple state synchronization of clus-
ter services. Because every node receives messages in
the same order, processing of messages occur once the
Totem protocol has ordered the message. This allows
every node in the cluster to remain in synchronization
when processor failure occurs or new processors are in-
cluded in the membership.

One key feature of the Totem stack is that it supports
the ability to communicate redundantly over multiple

network interfaces. All data including the membership
protocol is replicated over multiple network interfaces
using the Totem Redundant Ring Protocol [Koch02].

Totem is implemented completely in userspace using
user datagram protocol [Postel80] multicast. The pro-
tocol implementation can be configured to run within
Internet Protocol version 4 [USC81] networks or Inter-
net Protocol version 6 [Deering98] networks.

All communication may be, at user configuration, au-
thenticated and encrypted using a private secret key
stored securely on all nodes.

3.8 Configuration Engine

The Corosync Cluster Engine solves the issue of con-
figuration file independence by providing the ability to
load an application specific configuration engine. The
configuration engine provides a method to read and
write configuration files in an application specific way.
These plug-ins configure the Corosync Cluster Engine
as well as other components specific to an application
plug-in.

In the event that the Corosync Cluster Engine executive
is not running, the configuration engine can still be used
by applications transparently to read and store configu-
ration information.

3.9 Interprocess Communication Manager

The interprocess communication manager is responsi-
ble for receipt and transmission of IPC requests. The in-
coming IPC requests are routed via the service manager
to the appropriate service engine plug-in. The service
engine may send responses to a third-party process.

Every IPC connection is an abstraction of two file de-
scriptors. One file descriptor is used for third-party
process blocking request and response packets. The
remaining file descriptor is used exclusively for non-
blocking callback operations that should be executed by
the third-party process. These two file descriptors are
connected to each other during initialization of the IPC
connection by the Interprocess Communication Man-
ager.

2008 Linux Symposium, Volume One • 89

3.10 Service Engine

A service engine is created by third parties to provide
some form of cluster wide services. Some examples of
these are the Service Availability Forum’s Application
Interface Specification checkpoint service, Pacemaker,
or CMAN.

The service engine has a well defined live component re-
placement interface for run-time linking into the service
manager. The service engine is responsible for provid-
ing a specific class of cluster service to a user via API
or external control via the interprocess communication
manager.

3.11 Service Manager

The service manager is responsible for loading and un-
loading plug-in service engines. It is also responsible
for routing all requests to the service engines loaded in
the Corosync Cluster Engine.

During Corosync Cluster Engine initialization, the con-
figuration engine is loaded. The configuration engine
then stores the list of service engines to load. Finally,
the service manager loads every service engine.

Once the service manager loads a service, it is responsi-
ble for initializing the service engine. When the user re-
quests an operation via the interprocess communication
manager, that request is routed to the appropriate service
engine by the service manager. The service manager is
also responsible for sending membership changes to the
service manager. A service engine replicates informa-
tion via the low-level Totem Single Ring Protocol by
transmitting messages. These transmitted messages are
delivered via the service manager to a service engine.
Finally, the service manager is responsible for routing
synchronization activities with the synchronization en-
gine.

3.12 Synchronization Engine

The synchronization engine is responsible for directing
the recovery of all service engines after a failure or ad-
dition of a processor. A service engine may optionally
use the synchronization engine, or set the synchroniza-
tion engine functions to NULL, in which case they won’t
be used.

typedef uint64_t cpg_handle_t;

typedef enum {
CPG_DISPATCH_ONE,
CPG_DISPATCH_ALL,
CPG_DISPATCH_BLOCKING

} cpg_dispatch_t;

typedef enum {
CPG_TYPE_UNORDERED,
CPG_TYPE_FIFO,
CPG_TYPE_AGREED,
CPG_TYPE_SAFE

} cpg_guarantee_t;

typedef enum {
CPG_FLOW_CONTROL_DISABLED,
CPG_FLOW_CONTROL_ENABLED

} cpg_flow_control_state_t;

typedef enum {
CPG_OK = 1,
CPG_ERR_LIBRARY = 2,
CPG_ERR_TIMEOUT = 5,
CPG_ERR_TRY_AGAIN = 6,
CPG_ERR_INVALID_PARAM = 7,
CPG_ERR_NO_MEMORY = 8,
CPG_ERR_BAD_HANDLE = 9,
CPG_ERR_ACCESS = 11,
CPG_ERR_NOT_EXIST = 12,
CPG_ERR_EXIST = 14,
CPG_ERR_NOT_SUPPORTED = 20,
CPG_ERR_SECURITY = 29,
CPG_ERR_TOO_MANY_GROUPS=30

} cpg_error_t;

typedef enum {
CPG_REASON_JOIN = 1,
CPG_REASON_LEAVE = 2,
CPG_REASON_NODEDOWN = 3,
CPG_REASON_NODEUP = 4,
CPG_REASON_PROCDOWN = 5

} cpg_reason_t;

struct cpg_address {
uint32_t nodeid;
uint32_t pid;
uint32_t reason;

};

#define CPG_MAX_NAME_LENGTH 128

struct cpg_name {
uint32_t length;
char value[CPG_MAX_NAME_LENGTH];

};

#define CPG_MEMBERS_MAX 128

Figure 4. The Closed Process Group Interface
Definitions

90 • The Corosync Cluster Engine

The synchronization engine has four states

• sync_init

• sync_process

• sync_activate

• sync_abort

The first step in the synchronization process for a ser-
vice engine is initialization. The sync_init call in a
service engine stores information for executing the re-
covery algorithm created by the service engine designer.

The sync_process is executed to process the recov-
ery operation. Because the Totem protocol transmis-
sion queue may become full on the processor executing
recovery, sync_process may have to return without
completing by returning a negative value. If synchro-
nization was completed, a value of zero should be re-
turned.

If at any time during synchronization, a new processor
joins the membership or a processor leaves the member-
ship, the sync_abort call will be executed to reset any
state created by sync_init.

After synchronization has completed on all nodes,
sync_activate is called to activate the new data set
for the service engine.

3.13 Default Service Engines

The Corosync Cluster Engine provides a few default ser-
vice engines which are generically useful. Other default
service engines will be provided in the future.

3.13.1 Closed Process Group Service Engine

The closed process group API and the associated ser-
vice engine are responsible for providing closed pro-
cess group messaging semantics. Closed process groups
are a specialization of the process groups semantics
[Birman93].

Any process may join a process group. A process is a
system task with a process identifier, often called a PID.
Once joined, a join message is sent to every process in
the membership. The contents of the join message are

the process ID of the process and the processor identifier
that the joining process on which the process is running.
When the process leaves the process group, either vol-
untarily, or as a result of failure, a leave message is sent
to every remaining processor.

The closed process group service engine allows the
transmission and delivery of messages among a collec-
tion of processors that have joined the process group.

The definitions in Figure 4 and API in Figure 5 are used
to implement the closed process group system. At all
times, the extended virtual synchrony messaging model
is maintained by this service.

To join a process group, cpg_join() is used in a C
program. The user passes the process group to join. To
leave a process group, cpg_leave() is used. Failures
automatically behave as if the process had executed a
cpg_leave() function call. Messages are sent to every
node in the process group using the C function cpg_

mcast().

Changes in the process membership and delivery of
messages are executed using the cpg_dispatch() C
function call. This function calls the cpg_deliver_
fn_t() function to deliver messages and cpg_
confchg_fn_t() to deliver membership changes.
These functions are registered during initialization with
the cpg_initialize() function call.

3.13.2 Configuration Database Service Engine

The configuration database service engine provides a C
programming API to third-party processes to read and
write configuration information in the object database.
The API is essentially the same as that used in the object
database.

The configuration database service C API may operate
when the Corosync Cluster Engine is not running for
configuration purposes. In this operational mode, a con-
figuration engine is loaded and automatically used to
read or write the object database after the user of the
C API has made changes to the object database.

4 Library Programming Interface

4.1 Overview

The library programming interface is useful for third-
party processes that wish to access a Corosync service

2008 Linux Symposium, Volume One • 91

typedef void (*cpg_deliver_fn_t) (
cpg_handle_t handle,
struct cpg_name *group_name,
uint32_t nodeid,
uint32_t pid,
void *msg,
int msg_len);

typedef void (*cpg_confchg_fn_t) (
cpg_handle_t handle,
struct cpg_name *group_name,
struct cpg_address *member_list,

int member_list_entries,
struct cpg_address *left_list, int

left_list_entries,
struct cpg_address *joined_list, int

joined_list_entries);

typedef struct {
cpg_deliver_fn_t cpg_deliver_fn;
cpg_confchg_fn_t cpg_confchg_fn;

} cpg_callbacks_t;

cpg_error_t cpg_initialize (
cpg_handle_t *handle,
cpg_callbacks_t *callbacks);

cpg_error_t cpg_finalize (
cpg_handle_t handle);

cpg_error_t cpg_fd_get (
cpg_handle_t handle, int *fd);

cpg_error_t cpg_context_get (
cpg_handle_t handle, void **context);

cpg_error_t cpg_context_set (
cpg_handle_t handle, void *context);

cpg_error_t cpg_dispatch (
cpg_handle_t handle, cpg_dispatch_t

dispatch_types);

cpg_error_t cpg_join (
cpg_handle_t handle,
struct cpg_name *group);

cpg_error_t cpg_leave (
cpg_handle_t handle,
struct cpg_name *group);

cpg_error_t cpg_mcast_joined (
cpg_handle_t handle,
cpg_guarantee_t guarantee,
struct iovec *iovec, int iov_len);

Figure 5: The Closed Process Group Interface API

engine. The library programming interface provides
handle management and connection management with
the hdb inline library and the cslib library.

4.2 Handle Database API

The handle database API, shown in Figure 6, is respon-
sible for managing handles that map to memory blocks.
Handle memory blocks are reference counted and the
handle memory area is automatically freed when no user
references the handle. The API is fully thread safe and
may be used in multithreaded libraries.

When creating a handle database, the function hdb_

create() should be used. When destroying a handle
database, the function hdb_destroy() should be used.

To create a new entry in the handle database, use the
function hdb_handle_create(). Once the handle is
created, it will start with a reference count of 1. To re-
duce the reference count and free the handle, the func-
tion hdb_handle_destroy() should be executed.

Once a handle is created with hdb_handle_
create(), it can be referenced with hdb_handle_
get(). This function will retrieve the memory storage
area relating to the handle specified by the user. When
the library is done using the handle, hdb_handle_
put() should be executed.

4.3 Corosync Library API

The Corosync Library API, defined in Figure 7, pro-
vides a mechanism for communicating with Corosync
service engines. A library may connect with the
Corosync Cluster Engine by using cslib_service_

connect(). This function returns two file descriptors.
One file descriptor is used for request and response mes-
sages. The remaining file descriptor is used for callback
data that shouldn’t block normal requests.

Once an IPC connection is made, a request message can
be sent with cslib_send(). A response may be re-
ceived with cslib_recv(). These functions generally
shouldn’t be used unless the size of the message to be
received is variable length.

When the size of the message to be received is known,
cslib_send_recv() should be used. This will send a
request, and receive a response of a known size.

92 • The Corosync Cluster Engine

struct hdb_handle {
int state;
void *instance;
int ref_count;

};

struct hdb_handle_database {
unsigned int handle_count;
struct hdb_handle *handles;
unsigned int iterator;
pthread_mutex_t mutex;

};

void hdb_create (
struct hdb_handle_database

*handle_database);

void hdb_destroy (
struct hdb_handle_database

*handle_database);

int hdb_handle_create (
struct hdb_handle_database *handle_database,
int instance_size,
unsigned int *handle_id_out);

int hdb_handle_get (
struct hdb_handle_database *handle_database,
unsigned long long handle,
void **instance);

void hdb_handle_put (
struct hdb_handle_database *handle_database,
unsigned long long handle);

void hdb_handle_destroy (
struct hdb_handle_database *handle_database,
unsigned long long handle);

void hdb_iterator_reset (
struct hdb_handle_database

*handle_database);

void hdb_iterator_next (
struct hdb_handle_database *handle_database,
void **instance,
unsigned long long *handle);

Figure 6: The Handle Database API Definition

All of these functions handle recovery of message trans-
mission on short reads or writes, or in the event of sig-
nals or other system errors that may occur.

Finally, it is useful to poll a file descriptor, especially
in a dispatch routine. This can be achieved by using
cslib_poll() which is similar to the poll system call

cslib_service_connect (
int *response_out,
int *callback_out,
unsigned int service);

cslib_send (int s,
const void *msg,
size_t len);

cslib_recv (int s,
const void *sg,
size_t len);

cslib_send_recv (
int s,
struct iovec *iov,
int iov_len,
void *response,
int response_len);

cslib_poll (
struct pollfd *ufds,
unsigned int nfds,
int timeout);

Figure 7: The Corosync Library API Definition

except it retries on signals and other errors which are
recoverable.

5 Service Engine Programming Model and In-
terface

5.1 Overview

A service engine consists of a designer-supplied plug-in
interface coupled with the implementation of function-
ality that uses Corosync Cluster Engine APIs.

A service engine designer implements the plug-in inter-
face. This interface is a set of functions and data which
are loaded dynamically. The service manager directs the
service engine to execute functions. Some of the service
engine functions then use four APIs which are registered
with the service engine to execute the operations of the
Corosync Cluster Engine.

5.2 Plug-In Interface

The full plug-in interface is a C structure depicted in
Figure 8. The interface contains both data and function

2008 Linux Symposium, Volume One • 93

calls which are used by the service manager to direct the
service engine plug-in.

The name field contains a character string which
uniquely identifies the service engine name. This field
is printed by the Corosync Cluster Engine to give status
information to the user.

The id field contains a 16-bit unique identifier regis-
tered with the Corosync Cluster Engine. This unique
identifier is used to route library and Totem requests to
the proper service engine by the service manager.

When private data is needed to store state information,
the interprocess communication manager allocates a
block of memory of the size of the parameter private_
data_size during initialization of the connection.

The exec_init_fn field is a function executed to ini-
tialize the service engine. The exec_exit_fn field is
a function executed to request the service engine to shut
down. When the administrator sends a SIGUSR2 signal
to the Corosync Cluster Engine process, the state of the
service engine is dumped to the logging system by the
exec_dump_fn function.

The lib_init_fn field is a function executed when
a new library connection is initiated to the service en-
gine by the interprocess communication manager. The
lib_exit_fn field is a function executed when the IPC
connection is closed by the interprocess communication
manager.

The main functionality of a service engine is man-
aged by the service engine using the lib_engine and
exec_engine parameters. These parameters contain
arrays of functions which are executed by the service
manager.

A service engine connection is routed to the proper
lib_engine function by the service manager. When
a library connection requests the service engine to exe-
cute functionality, the connection’s id is used to iden-
tify the function in the array to execute. The lib_

engine_count contains the number of entries in the
lib_engine array.

The function then would generally use the various APIs
available within the corosync_api_v1 structure to
create timers, send Totem messages, or respond with
a message using the interprocess communication man-
ager.

When Totem messages are originated, they are deliv-
ered to the proper exec_engine function by the ser-
vice manager to every processor in the cluster. The
proper exec_engine function is called based upon the
service id in the header of the function. The exec_

engine_count contains the number of entries in the
exec_engine array.

The design of a service engine should take advantage
of the Totem ordering guarantees by executing most of
the logic of a service engine in the exec_engine func-
tions. These functions generally respond to the library
request that originated the Totem message using the in-
terprocess communication manager API.

5.3 Service Engine APIs

5.3.1 Overview

There are four sets of functionality within Corosync ser-
vice engine APIs shown in Figure 9.

5.3.2 Timer API

The timer api allows a user-specified callback to be ex-
ecuted when a timer expires. Timers may either be de-
fined as absolute or at some duration into the future.

The timer_add_duration() function is used to add
a callback function that expires into a certain num-
ber of nanoseconds into the future. The timer_add_

absolute() function is used to execute a callback at
an absolute time as specified through the number of
nanoseconds since the epoch.

If a timer has been added to the system, and later needs
to be deleted before it expires, the designer can execute
timer_delete() function to remove the timer.

Finally, a service engine can obtain the system time in
nanoseconds since the epoch with the timer_get()

function call.

5.3.3 Interprocess Communication Manager API

The Interprocess Communication Manager API in-
cludes functions to set and determine the source of mes-
sages, to obtain the IPC connection’s private data store,

94 • The Corosync Cluster Engine

struct corosync_lib_handler {
void (*lib_handler_fn) (void *conn, void *msg);
int response_size;
int response_id;
enum corosync_flow_control flow_control;

};

struct corosync_exec_handler {
void (*exec_handler_fn) (void *msg, unsigned int nodeid);
void (*exec_endian_convert_fn) (void *msg);

};

struct corosync_service_engine {
char *name;
unsigned short id;
unsigned int private_data_size;
enum corosync_flow_control flow_control;
int (*exec_init_fn) (struct objdb_iface_ver0 *, struct corosync_api_v1 *);
int (*exec_exit_fn) (struct objdb_iface_ver0 *);
void (*exec_dump_fn) (void);
int (*lib_init_fn) (void *conn);
int (*lib_exit_fn) (void *conn);
struct corosync_lib_handler *lib_engine;
int lib_service_count;
struct corosync_exec_handler *exec_engine;
int (*config_init_fn) (struct objdb_iface_ver0 *);
int exec_service_count;
void (*confchg_fn) (

enum totem_configuration_type configuration_type,
unsigned int *member_list, int member_list_entries,
unsigned int *left_list, int left_list_entries,
unsigned int *joined_list, int joined_list_entries,
struct memb_ring_id *ring_id);

void (*sync_init) (void);
int (*sync_process) (void);
void (*sync_activate) (void);
void (*sync_abort) (void);

};

struct corosync_service_handler_iface_ver0 {
struct corosync_service_handler *(*corosync_get_service_handler_ver0) (void);

};

Figure 8: The Service Engine Plug-In Interface

2008 Linux Symposium, Volume One • 95

typedef void *corosync_timer_handle;

struct corosync_api_v1 {
int (*timer_add_duration) (

unsigned long long nanoseconds_in_future,
void *data, void (*timer_nf) (void *data),
corosync_api_handle_t *handle);

int (*timer_add_absolute) (
unsigned long long nanoseconds_from_epoch,
void *data, void (*timer_fn) (void *data),
corosync_timer_handle_t *handle)

void (*timer_delete) (corosync_timer_handle_t timer_handle):

unsigned long long (*timer_time_get) (void);

void (*ipc_source_set) (mar_message_source_t *source, void *conn);

int (*ipc_source_is_local) (mar_message_source_t *source);

void *(*ipc_private_data_get) (void *conn);

int (*ipc_response_send) (void *conn, void *msg, int mlen);

int (*ipc_dispatch_send) (void *conn, void *msg, int mlen);

void (*ipc_refcnt_inc) (void *conn);

void (*ipc_refcnt_dec) (void *conn);

void (*ipc_fc_create) (
void *conn, unsigned int service, char *id, int id_len,
void (*flow_control_state_set_fn)

(void *context, enum corosync_flow_control_state flow_control_state_set),
void *context);

void (*ipc_fc_destroy) (
void *conn, unsigned int service, unsigned char *id, int id_len);

void (*ipc_fc_inc) (void *conn);

void (*ipc_fc_dec) (void *conn);

unsigned int (*totem_nodeid_get) (void);

unsigned int (*totem_ring_reenable) (void);

unsigned int (*totem_mcast) (struct iovec *iovec, int iov_len,
unsigned int gaurantee);

unsigned void (*error_memory_failure) (void);
};

Figure 9: The Service Engine APIs

96 • The Corosync Cluster Engine

and to send responses to either the response or dispatch
socket descriptor. Messages are automatically delivered
to the correct service engine depending upon parameters
in the message header.

The ipc_source_set() will set a mar_message_

source_t message structure with the node id and a
unique identifier for the IPC connection. A service en-
gine uses this function to uniquely identify the source of
an IPC request. Later this mar_message_source_t

structure is sent in a multicast message via Totem. Once
this message is delivered, the Totem message handler
then can respond to the ipc request by determining if
the message was locally sent via ipc_source_is_

local().

Each IPC connection contains a private data area private
to the IPC connection. This memory area is allocated on
IPC initialization and is determined from the private_
data field in the service engine definition. To obtain the
private data, the function ipc_private_data_get()

function is executed by the service engine designer.

Every IPC connection is actually two socket descriptors.
One descriptor, called the response descriptor, is used
for requests and responses to the library user. These re-
quests are meant to block the third-party process using
the Corosync Cluster Engine until a response is deliv-
ered. If the third-party process doesn’t desire blocking
behavior, but may want to execute a callback within a
dispatch function, the service engine designer can use
ipc_dispatch_send() instead.

There are other APIs which are useful to manage flow
control, but they are complex to explain in a short pa-
per. If a designer wants to use these APIs, they should
consider viewing the Corosync Cluster Engine wiki or
mailing list.

5.3.4 Totem API

The Totem API is extremely simple for service engines
to use with only three API functions. These functions
obtain the current node ID, allow a failed ring to be
reenabled, and allow the multicast of a message. Con-
versely, most of the complexity of Totem is connected to
the Corosync service engine interface and hidden from
the user.

To obtain the current 32-bit node identifier, the function
totem_nodeid_get() function can be called. This is

useful when making comparisons of which node origi-
nated a message for service engines.

When Totem is configured for redundant ring oper-
ational mode, it is possible that an active ring may
fail. When this happens, a service engine can execute
totem_ring_reenable() via administrative opera-
tion to repair a failed redundant ring.

Service engines do a majority of their work by send-
ing a multicast message and then executing some func-
tionality based upon the multicasted message parame-
ters. To multicast a message, an io vector is send via the
totem_mcast() API. This message is then delivered
to all nodes according to the extended virtual synchrony
model.

5.3.5 Miscellaneous APIs

Currently many of the subsystems in the Corosync Clus-
ter Engine are tolerant of failures to allocate memory.
The exception to this rule may be the service engine
implementations themselves. When a non-recoverable
memory allocation failure occurs in a service engine, the
api error_memory_failure() is called to notify the
Corosync Cluster Engine that the service engine calling
the function has had a memory malfunction.

In the future, the Corosync Cluster Engine designers in-
tend to manage memory pools for service engines to
avoid any out of memory conditions or memory process
starvation.

6 Security Model

The Corosync Cluster Engine mitigates the following
threats:

• Forged Totem messages intended to fault the
Corosync Cluster Engine

• Monitoring of network data to capture sensitive
cluster information

• Malformed IPC messages from unprivileged users
intended to fault the Corosync Cluster Engine

The Corosync Cluster Engine mitigates those threats via
two mechanisms:

2008 Linux Symposium, Volume One • 97

• Authentication of Totem messages and IPC users

• Secrecy of Totem messages with the usage of en-
cryption

7 Integration with Third Party Projects

7.1 OpenAIS

OpenAIS [OpenAIS] is an implementation of the Ser-
vice Availability Forum’s Application Interface Specifi-
cation. The specification is a C API designed to improve
availability by reducing the mean time to repair through
redundancy.

Integration with OpenAIS was a simple task since a ma-
jority of the Corosync functionality was reduced from
the OpenAIS code base. When OpenAIS was split into
two projects, some of the internal interfaces used by
plug-ins changed. The usage of these internal APIs were
modified to the definitions described in this paper.

7.2 OpenClovis

OpenClovis [OpenClovis] is an implementation of
the Service Availability Forum’s Application Interface
Specification. OpenClovis uses some portions of the
Corosync services. Specifically, it uses the Totem pro-
tocol APIs to provide membership for its Cluster Mem-
bership API.

7.3 OCFS2

The OCFS2 [OCFS2] filesystem can use the closed pro-
cess group api to communicate various pieces of state
information about the mounted cluster. Further the CPG
service is used for supporting Posix Locking because of
the virtual synchrony feature of the closed process group
service.

7.4 Pacemaker

Pacemaker [Pacemaker] is a scalable High-Availability
cluster resource manager formerly part of Heartbeat
[LinuxHA]. Pacemaker was first released as part of
Heartbeat-2.0.0 in July 2005 and overcame the deficien-
cies of Heartbeat’s previous cluster resource manager:

• Maximum of 2-nodes

• Highly coupled design and implementation

• Overly simplistic group-based resource model

• Inability to detect and recover from resource-level
failures

• Pacemaker is now maintained independently of
Heartbeat in order to support both the OpenAIS
and Heartbeat cluster stacks equally.

Pacemaker functionality is broken into logically distinct
pieces, each one being a separate process and able to be
rewritten/replaced independently of the others:

• cib—Short for Cluster Information Base. Contains
definitions of all cluster options, nodes, resources,
their relationships to one another and current sta-
tus. Synchronizes updates to all cluster nodes.

• lrmd—Short for Local Resource Management
Daemon. Non-cluster aware daemon that presents
a common interface to the supported resource
types. Interacts directly with resource agents
(scripts).

• pengine—Short for Policy Engine. Computes the
next state of the cluster based on the current state
and the configuration. Produces a transition graph
contained a list of actions and dependencies.

• tengine—Short for Transition Engine. Co-
ordinates the execution of the transition graph pro-
duced by the Policy Engine.

• crmd—Short for Cluster Resource Management
Daemon. Largely a message broker for the PE, TE,
and LRM. Also elects a leader to co- ordinate the
activities of the cluster.

The Pacemaker design of one process per feature pre-
sented an interesting challenge when integrating with
Corosync which uses plug-ins/service engines to expand
its functionality. To simplify the task of porting to the
Corosync Cluster Engine, a small plug-in was created
to provide the services traditionally delivered by Heart-
beat.

At startup, the Pacemaker service engine spawns Pace-
maker processes and respawns them in the event of fail-
ure. Cluster-aware components connect to the plug-in

98 • The Corosync Cluster Engine

using the interprocess communication manager. Those
applications can then send and receive cluster messages,
query the current membership information, and receive
updates.

The Pacemaker components use the Pacemaker service
engine features indirectly via an informal API which is
used to hide details of the chosen cluster stack. The
abstraction layer can automatically determine the oper-
ational stack and chose the correct implementation at
runtime by checking the runtime environment. Once
the Pacemaker service engine and abstraction layer were
functional, Pacemaker was made stack independent, as
shown in Figure 10, with little effort.

PEngineTEngine

CRMdLRMd CIB

Cluster Stack Abstraction

Corosync

Heartbeat

Stonith*

PacemakerHeartbeat

DIAGRAM KEY

CCM (Membership)

Corosync

Figure 10. Pacemaker Dual Stack Architecture

Pacemaker components exchange messages consisting
mostly of compressed XML-formatted strings. Repre-
senting the payload as XML is not efficient, but the for-
mat’s verboseness means it compresses well, and com-
plex objects are easily unpackable by numerous custom
and standard libraries.

In order to accommodate Pacemaker, the Corosync
Cluster Engine designers added ordered service engine
shutdown. When an administrator or another service en-
gine triggers a shutdown of the Corosync Cluster En-

gine, the service engines clean up and exit gracefully.
This allows the Pacemaker service engine to organize
for resources on a node be to migrated away grace-
fully and eventually stop its child processes before the
Corosync Service Engine process exits.

7.5 Red Hat Cluster Suite

The Red Hat Cluster Suite [RHCS] version 3 uses the
Corosync Cluster Engine. The Red Hat Cluster Suite
uses a service engine called CMAN to provide services
to other Red Hat Cluster Suite services.

Quorum is the main function of the CMAN service and
is a strong dependency in all of the Red Hat Cluster
Suite software stack. Quorum ensures that the cluster is
operating consistently with more then half of the nodes
operational. Without quorum, filesystems such as the
Global File System can lead to data corruption.

The Quorum disk software communicates with the
CMAN service via an API. The quorum disk software
provides extra voting information to help the infrastruc-
ture identify when quorum has been met for special cri-
teria.

Red Hat Cluster Suite uses a distributed XML-based
configuration system called CCS. CMAN provides a
configuration engine which reads Red Hat Cluster
Suite specific configuration format files and stores them
within the object database. This configuration plug-in
overrides the default parsing of the /etc/corosync/
corosync.conf configuration file format.

The libcman library provides backwards compatibility
with the cman-kernel in Red Hat Enterprise Linux 4.
This backwards compatibility is used by a few appli-
cations such as CCS, CLVMD, and rgmanager.

Red Hat Cluster Suite, and more specifically the Global
File System component, makes use of the Closed Pro-
cess Groups interface that is standardized within the
CPG interface included in the Corosync Cluster Engine.

8 Future Work

The Corosync Cluster Engine Team intends to improve
the scalability of the engine. Currently, the engine has
been used in a physical 60 node cluster. The engine
has been tested in a 128 node virtualized environment.

2008 Linux Symposium, Volume One • 99

While these environments demonstrated the Corosync
Cluster Engine works properly at large processor counts,
the team wants to improve scalability to even larger
processor counts and reduce latency while improving
throughput.

The Corosync Cluster Engine designers desire to add
a generically useful quorum plug-in engine so that any
project may define its own quorum system.

Finally, the team wishes to add a generic fencing engine
and mechanism for multiple plug-in services to deter-
mine how to fence cooperatively.

9 Conclusion

This paper has presented a strong rationale for using the
Corosync Cluster Engine and demonstated the design
is generically useful for a variety of third-party cluster
projects. This paper has also presented the current ar-
chitecture and plug-in developer application program-
ming interfaces. Finally, this paper has presented a brief
overview of some of our future work.

References

[Corosync] The Corosync Cluster Engine Community.
The Corosync Cluster Engine,
http://www.corosync.org

[Amir95] Y. Amir, L.E. Moser, P.M. Melliar-Smith,
D.A. Agarwal, and P. Ciarfella. The Totem
Single-Ring Ordering and Membership Protocol,
ACM Transactions On Computer Systems, 13(4),
pp. 311–342, November, 1995. http://www.
cs.jhu.edu/~yairamir/archive.html

[Moser94] L.E. Moser, Y. Amir, P.M. Melliar-Smith,
and D.A. Agarwal. Extended Virtual Synchrony,
ACM Transactions on Computer Systems
13(4):311-342, November, 1995. Proceedings of
DCS, pp. 56–65, 1994.

[Dake05] S. Dake and M. Huth. Implementing High
Availability Using the SA Forum AIS
Specification, Embedded Systems Conference,
2005.

[SaForumAIS] Service Availability Forum. The
Service Availability Forum Application Interface
Specification, http://www.saforum.org/
specification/download

[Birman93] K.P. Birman. The Process Group
Approach to Reliable Distributed Computing,
Communications of the ACM 36(12): 36-56, 103,
1993.

[Koch02] R.R. Koth, L.E. Moser, and P. M.
Melliar-Smith. The Totem Redundant Ring
Protocol, ICDCS 2002:598-607.

[Postel80] J. Postel. User Datagram protocol, Darpa
Internet Program RFC 768, August 1980.

[USC81] University of Southern California. Internet
Protocol, Darpa Internet Program RFC 791,
September 1981.

[Deering98] S. Deering and R. Hinden. Internet
Protocol, Version 6 (IPv6) Specification, IETF
Network Working Group, December 1998.

[OpenAIS] The OpenAIS Community. The OpenAIS
Standards Based Cluster Framework,
http://www.openais.org

[OpenClovis] The OpenClovis Company. OpenClovis,
http://www.openclovis.org

[OCFS2] The Oracle Cluster File System Community.
The Oracle Cluster Filesystem, http:
//oss.oracle.com/projects/ocfs2

[Pacemaker] The Pacemaker Community. Pacemaker,
http://www.clusterlabs.org

[LinuxHA] The Linux-HA Community. Linux-HA,
http://www.linux-ha.org

[RHCS] Red Hat Cluster Suite. The Linux Cluster
Community Project, http:
//sources.redhat.com/cluster/wiki

100 • The Corosync Cluster Engine

Proceedings of the
Linux Symposium

Volume One

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

