
Everything is a virtual filesystem: libferris

Ben Martin
affiliation pending

monkeyiq@users.sf.net

Abstract

Libferris is a user address space virtual (Semantic)
filesystem. Over the years it has grown to be able
to mount relational databases, XML, and many appli-
cations including X Window. Rich support for in-
dex and search has been added. Recently the similari-
ties between modern Linux kernel filesystem, Semantic
Filesystems and the XML data model has been exploited
in libferris. This leads to enabling XSLT filesystems
and the evaluation of XQuery directly on a filesystem.
XQueries are evaluated using both indexing and shortcut
loading to allow things like db4 files or kernel filesys-
tems with directory name caching to be used in XQuery
evaluation so that large lookup tables can be efficiently
queried. As the result of XQuery is usually XML—As
the similarities between XML and filesystems are dis-
cussed, the option is there for queries to generate filesys-
tems.

Prior knowledge of the existance of Extended Attributes
as well as some familiarity with XML and XQuery will
be of help to the reader.

1 Introduction

Libferris [2, 9, 11, 13, 14] is a user address space virtual
filesystem [1]. The most similar projects to libferris are
gnome-vfs and kio_slaves. However, the scope of libfer-
ris is extended both in terms of its capability to mount
things, its indexing and its metadata handling.

Among its “non conventional” data sources, libferris is
able to mount relational databases, XML, db4, Evolu-
tion, Emacs, Firefox and X Window.

The data model of libferris includes rich support for uni-
fying metadata from many sources and presenting appli-
cable metadata on a per filesystem object basis. Index-
ing and querying based on both fulltext and metadata
predicates complements this data model allowing users

to create virtual filesystems which satisfy their informa-
tion need. It should be noted that metadata can be asso-
ciated with any filesystem object, for example a tuple in
a mounted database.

The paper now moves to discuss what semantic filesys-
tems are and in particular what libferris is, and how it re-
lates to the initial designs of a semantic filesystems. The
similarities and differences between the libferris, tradi-
tional Linux kernel filesystem and XML data models
is then discussed with mention of how issues with data
model differences have been resolved where they arise.
The focus is then turned to information indexing and
search. The indexing section is more an overview of pre-
vious publications in the area to give the reader familiar-
ity for the example in the XQuery section. The treatment
of XQuery evaluation both directly on a filesystem and
on its index then rounds out the paper.

2 Semantic Filesystems

The notion of a semantic filesystem was originally pub-
lished by David K. Gifford et al. in 1991 [4].

A semantic file system differs from a traditional file sys-
tem in two major ways:

• Interesting meta data from files is made available
as key-value pairs.

• Allowing the results of a query to be presented as a
virtual file system.

The notion of interesting meta data is similar to modern
Linux kernel Extended Attributes. The main difference
being that meta data in a Semantic Filesystem is inferred
at run time whereas Linux kernel Extended Attributes
are read/write persisted byte streams. In the context of
libferris, the term Extended Attributes can refer to both
persisted and inferred data. In this way the Extended

• 303 •



304 • Everything is a virtual filesystem: libferris

Foo.png

1024

Extended Attributes

+width = 1024

+height = 768

+

768

Figure 1: The image file Foo.png is shown with it’s byte
contents displayed from offset zero on the left extend-
ing to the right. The png image transducer knows how
to find the metadata about the image file’s width and
height and when called on will extract or infer this in-
formation and return it through a metadata interface as
an Extended Attribute.

Attributes in libferris have been virtualized along with
the filesystem itself. The term Extended Attributes will
be used in the libferris sense unless otherwise qualified.

In a Semantic filesystem interesting meta data is ex-
tracted from a file’s byte content using what are referred
to as transducers [4]. An example of a transducer would
be a little bit of code that can extract the width of a spe-
cific image file format. A transducer to extract some
image related metadata is shown conceptually in Fig.1.
Image dimensions are normally available at specific off-
sets in the file’s data depending on the image format.
A transducer which understands the PNG image encod-
ing will know how to find the location of the width and
height information given a PNG image file.

Queries are submitted to the file system embedded in the
path and the results of the query form the content of the
virtual directory. For example, to find all documents that
have been modified in the last week one might read the
directory “/query/(mtime>=begin last week)/”. The re-
sults of a query directory are calculated every time it is
read. Any metadata which can be handled by the trans-
ducers [4] (metadata extraction process) can be used to
form the query.

Libferris allows the filesystem itself to automatically
chain together implementations. The filesystem imple-
mentation can be varied at any file or directory in the
filesystem. For example, in Figure 2 because an XML
file has a hierarchical structure it might also be seen
as a filesystem. The ability to select a different imple-
mentation at any directory in a URL requires various
filesystems to be overlaid on top of each other in order
to present a uniform filesystem interface.

When the filesystem implementation is varied at a file
or directory then two different filesystem handlers are
active at once for that point. The left side of Figure 2
is shown with more details in Figure 3. In this case
both the operating system kernel implementation and
the XML stream filesystem implementation are active
at the URL file://tmp/order.xml. The XML
stream implementation relies on the kernel implementa-
tion to provide access to a byte stream which is the XML
file’s contents. The XML implementation knows how to
interpret this byte stream and how to allow interaction
with the XML structure though a filesystem interface.

Note that because in the above the XML implementa-
tion can interact with the operating system kernel imple-
mentation to complete its task this is subtly different to
standard UNIX mounting where a filesystem completely
overrides the mount point.

<order>
  <customer id="111"/>
  ...
</order>

file:// postgresql://

tmp ...... localhost

mydatabase

customerstable

... 111-fred 112-frodo ...

order.xml

...

...

...
order

customer

Figure 2: A partial view of a libferris filesystem. Ar-
rows point from children to their parents, file names are
shown inside each rectangle. Extended Attributes are
not shown in the diagram. The box partially overlapped
by order.xml is the contents of that file. On the left
side, an XML file at path /tmp/order.xml has a filesys-
tem overlaid to allow the hierarchical data inside the
XML file to be seen as a virtual filesystem. On the right:
Relational data can be accessed as one of the many data
sources available though libferris.

The core abstractions in libferris can be seen as the abil-
ity to offer many filesystem implementations and select
from among them automatically where appropriate for
the user, the presentation of key-value attributes that
files posses, a generic stream interface [6] for file and
metadata content, indexing services and the creation of
arbitrary new files.

Filesystem implementations allow one to drill into com-



2007 Linux Symposium, Volume One • 305

file:// implementation

XML implementation

order

customer

tmp

order.xml

order.xml

Figure 3: The filesystem implementation for an XML
file is selected to allow the hierarchical structure of the
XML to be exposed as a filesystem. Two different
implementations exist at the “order.xml” file level: an
implementation using the operating system’s kernel IO
interface and an implementation which knows how to
present a stream of XML data as a filesystem. The XML
implementation relies on the kernel IO implementation
to provide the XML data itself.

posite files such as XML, ISAM1 databases or tar files
and view them as a file system. This is represented in
Figure 2. Having the virtual filesystem able to select
among filesystem implementations in this fashion al-
lows libferris to provide a single file system model on
top of a number of heterogeneous data sources.2

Presentation of key-value attributes is performed by ei-
ther storing attributes on disk or by creating synthetic
attributes who’s values can be dynamically generated
and can perform actions when their values are changed.
Both stored and generated attributes in libferris are re-
ferred to simply as Extended Attributes (EAs). Exam-
ples of EAs that can be generated include the width and
height of an image, the bit rate of an mp3 file or the
MD53 hash of a file. This arrangement is shown in Fig-

1Indexed Sequential Access Method, e.g., B-Tree data stores
such as Berkeley db.

2Some of the data sources that libferris currently handles include:
http, ftp, db4, dvd, edb, eet, ssh, tar, gdbm, sysV shared memory,
LDAP, mbox, sockets, mysql, tdb, and XML.

3MD5 hash function RFC, http://www.ietf.org/rfc/
rfc1321.txt

ure 4.

For an example of a synthetic attribute that is writable
consider an image file which has the key-value EA
width=800 attached to it. When one writes a value
of 640 to the EA width for this image then the file’s
image data is scaled to be only 640 pixels wide. Hav-
ing performed the scaling of image data the next time
the width EA is read for this image it will generate the
value 640 because the image data is 640 pixels wide.
In this way the differences between generated and stored
attributes are abstracted from applications.

Another way libferris extends the EA interface is by of-
fering schema data for attributes. Such meta data allows
for default sorting orders to be set for a datatype, filter-
ing to use the correct comparison operator (integer vs.
string comparison), and GUIs to present data in a for-
mat which the user will find intuitive.

3 Data models: XML and
Semantic Filesystems

As the semantic filesystem is designed as an extension
of the traditional Unix filesystem data model the two are
very similar. Considering the relatively new adoption of
Extended Attributes to kernel filesystems the data mod-
els between the two filesystem types are identical.

The main difference is the performance differences be-
tween deriving attributes (semantic filesystem and trans-
ducers) or storing attributes (Linux kernel Extended At-
tributes). Libferris extends the more traditional data
model by allowing type information to be specified for
its Extended Attributes and allowing many binary at-
tributes to form part of a classification ontology [12, 7].

Type information is exposed using the same EA in-
terface. For example an attribute foo would have
schema:foo which contains the URL of the schema
for the foo attribute. To avoid infinite nesting the
schema for schema:foo, ie, schema:schema:
foo will always have the type schema and there will
be no schema:schema:schema:foo.

As the libferris data model is a superset of the standard
Linux kernel filesystem data model one may ignore lib-
ferris specific features and consider the two data models
in the same light. This is in fact what takes place when
libferris is exposed as a FUSE filesystem [1].



306 • Everything is a virtual filesystem: libferris

Foo.png

1024

Extended Attributes

+width = 1024

+height = 768

+

+secutiry-context = ben

+

+my-rating = good

+

+aspect ratio = 1.33

+

768

RDF repository

Operating system
Extended Attribute

Interface

Inference
From other
EA(s)

PNG file transducer

Figure 4: Metadata is presented via the same Extended Attribute (EA) interface. The values presented can be derived
from the file itself, derived from the values of other EA, taken from the operating system’s Extended Attribute
interface or from an external RDF repository.

Taking an abstract view of the data model of libferris
one arrives at: files with byte contents, files nested in
a hierarchy and arbitrary attributes associated with each
file. This is in many ways similar to the data model
of XML: elements with an ordered list of byte content,
elements nested in an explicit ordering with attributes
possibly attached to each element.

The differences between the data models may raise is-
sues and require explicit handling. The differences have
been found to be:

• XML elements can contain multiple contiguous
bytes serving as their “contents.” Files may have
many sections of contiguous bytes separated by
holes. Holes serve to allow the many sections of
contiguous bytes to appear in a single offset range.
For example, I could have a file with the two worlds
“alice” and “wonderland” logically separated by 10
bytes. The divergence of the data models in this re-
spect is that the many sections of contiguous bytes
in an XML element are not explicitly mapped into
a single logical contiguous byte range.

• XML elements are explicitly ordered by their phys-
ical location in the document. For any two ele-
ments with a common parent element it will be
apparent which element comes “before” the other.
Normally files in a filesystem are ordered by an im-
plementation detail—their inode. The inode is a

unique number (across the filesystem itself) iden-
tifying that file. Many tools which interact with a
filesystem will sort a directory by the file name to
be more palatable to a human reader.

• The notions of file name and element name have
different syntax requirements. A file name can
contain any character apart from the “/” charac-
ter. There are much more stringent requirements
on XML element names—no leading numbers, a
large range of characters which are forbidden.

• For all XML elements with a common parent it is
not required that each child’s name be unique. Any
two files in a directory must have different names.

The differences are shown in Figure 5.

The identification of this link between data models and
various means to address the issues where differences
arise helps both the semantic filesystem and XML com-
munities by bringing new possibilities to both. For ex-
ample, the direct evaluation of XQuery on a semantic
filesystem instead of on an XML document. The blur-
ring of the filesystem and XML also allows modern Of-
fice suites to directly manipulate filesystems [14].

The file name uniqueness issue is only present if XML is
being seen as a semantic filesystem. In this case it can be
acceptable to modify the file name to include a unique
number as a postfix. In cases such as resolution of XPath



2007 Linux Symposium, Volume One • 307

XML Text Node

XML Element Node

XML Text Node

XML Text Node

File / Directory

Byte Content

Child

Child

Child

Child--2

Strange<>\One
Child Order

Implementation
defined
ordering

Hole

Figure 5: On the left an XML Element node is shown with some child nodes. On the right a filesystem node is
shown with some similar child nodes. Note that XML Text nodes can be considered to provide the byte content
of the synonymous filesystem abstraction but metadata about their arrangement can not be easily communicated.
Child nodes in the XML side do not need to have unique names for the given parent node and maintain a strict
document order. Child nodes on the filesystem side can contain more characters in their file names but the ordering
is implementation defined by default.

or XQueries file names should be tested without consid-
eration of the unique postfix so that query semantics are
preserved.

As XML elements can not contain the “/” character
exposing XML as a semantic filesystem poses no is-
sue with mapping XML element names into file names.
Unfortunately the heavy restrictions on XML element
name syntax does present an issue. The most convenient
solution has been found to be mapping illegal charac-
ters in file names into a more verbose description of the
character itself. For example a file name “foo<bar>.txt”
might be canonicalized to an XML element name of
“foo-lt-bar-gt.txt”. The original unmodified file name
can be accessed through a name spaced XML attribute
on the XML element.

XML element ordering can be handled by exposing
the place that the XML element appeared in document
order. For example, a document with “b” containing
“c,d,e” in that order the “c” file would have a place of
zero, and “e” would be two. With this attribute available
the original document ordering can be obtained through
the semantic filesystem by sorting the directory on that
attribute. As there is no (useful) document ordering for

a filesystem this is not an issue when exposing a filesys-
tem as XML.

There is no simple solution to the fact that XML ele-
ments can have multiple text nodes as children. In cases
where XML with multiple child nodes exist they are
merged into a single text node containing the concate-
nation in document order of the child text nodes. Files
with holes are presented as though the hole contained
null bytes.

4 Information Search

In recent years much emphasis has been placed on so
called “Desktop search”. Few machines exist as islands
and as such the index and search capabilities of any non
trivial system must allow seamless integration of Inter-
net, Intranet and desktop sources. The term “filesystem
search” at least removes the connotations that search is
limited to the desktop alone.

Details of indexing have been presented in prior publica-
tions [10, 9, 11]. Briefly the indexing capabilities in lib-
ferris are exposed through plugins. Much of the empha-
sis has been placed on indexing of metadata leaving full



308 • Everything is a virtual filesystem: libferris

text indexing [17] to implementations such as Lucene
and TSearch2. Two of the main metadata plugins use
sorted Berkeley db4 files or a PostgreSQL database.

The chosen query syntax is designed based on the
“The String Representation of LDAP Search Fil-
ters” [5]. This is a very simple syntax which pro-
vides a small set of comparative operators to make
key operator value terms and a means to com-
bine these terms with boolean and, or and not. All
terms are contained in parenthesis with boolean com-
bining operators located before the terms they operate
on.

The comparative operators have been enhanced and in
some cases modified from the original semantics [5].
Syntax changes include the use of == instead of =
for equality testing. Approximate matching ~= was
dropped in favor of regular expression matching using
perl operator syntax =~. Operators which are specific to
the LDAP data model have been removed. The opera-
tors and semantics are presented in Table 1. Coercion of
rvalue is performed both for sizes and relative times.
For example, “begin today” will be converted into the
operating system’s time representation for the start of
the day that the query is executed.

OP Semantics
=~ lvalue matches the

regular expression in rvalue
== lvalue is exactly equal to rvalue
<= lvalue is less than or equal to rvalue
>= lvalue is greater than or

equal to rvalue

Table 1: Comparative operators supported by the libfer-
ris search syntax. The operators are used infix, there is
a key on the left side and a value on the right. The key
is used to determine which EA is being searched for.
The lvalue is the name of the EA being queried. The
rvalue is the value the user supplied in the query.

Resolution of the and and or is performed (conceptu-
ally) by merging the sets of matching file names using
either an intersection or union operation respectively.
The semantics of negation are like a set subtraction: the
files matching the negated subquery are removed from
the set of files matching the portion of the query that
the negation will combine with. If negation is applied
as the top level operation then the set of files to com-
bine with is considered to be the set of all files. The

nesting of and, or and not will define what files the
negation subquery will combine with. As an exam-
ple of negation resolution consider the fquery which
combines a width search with a negated size search:
(&(width<=640)(!(size<=900))). The set of files
which have a width satisfying the first subquery are
found and we call this set A. The set of files which
have a size matching the second part of the query, ie,
size<=900 are found and we call this set B. The re-
sult of the query is A\B.

The eaq:// virtual filesystem takes a query as a directory
name and will populate the virtual directory with files
matching the query. Other closely related query filesys-
tems are the eaquery:// tree. The eaquery:// filesystem is
has slightly longer URLs but it allows you to set limits
on the number of results returned and to set how con-
flicting file names are resolved. Some example queries
are shown in Figure 6. Normally a file’s URL is used as
its file name for eaquery:// filesystems. The shortnames
option uses just the file’s name and when two results
from different directories happen to have the exact same
file name it appends a unique number to one of the re-
sult’s file names. This is likely to happen for common
file names such as README.

Full text queries can be evaluated using the
fulltextquery:// or ftxq:// URL schemes.
Both metadata and fulltext predicates can be evaluated
to produce a single result filesystem [11].

One major area where the index and search in libferris
diverges from similar tools is the application of Formal
Concept Analysis (FCA) [3]. FCA can be seen as un-
supervised machine learning and is a formal method for
dealing with the natural groupings within a given set of
data. The result of FCA is a Concept Lattice. A Con-
cept Lattice has many formal mathematical properties
but may be considered informally as a specialization hi-
erarchy where the further down a lattice one goes the
more attributes the files in each node have. Files can
be in multiple nodes at the same time. For example, if
there are two attributes (mtime>=begin last week) and
(mtime>=begin last month) then a file with the first at-
tribute will also have the latter.

Using the SELinux type and identity of the example
201,759 files the concept lattice shown in Figure 7 is
generated. The concept 11 in the middle of the bot-
tom row shows that user_u identity is only active for
3 fonts_t typed files. Many of the links to the lower con-



2007 Linux Symposium, Volume One • 309

cepts are caused by the root and system identities being
mutually exclusive while the system identity combines
with every attribute that the root identity does.

Readers interested in FCA with libferris should see [8,
16, 15].

4.1 XQuery

Being able to view an entire filesystem as an XML data
model allows the evaluation of XQuery directly on the
filesystem.

Libferris implements the native XQilla data model and
attempts to offer optimizations to XQuery evaluation.
Some of the possibilities of this are very nice, bringing
together the db4, Postgresql, XML and file:// in a single
XQuery.

There are also many efficiency gains that are available
by having multiple data sources (filesystems) available.
In an XML only query if you are looking up a user by a
key things can be very slow. If you copy the users info
into a db4 file and use libferris to evaluate your XQuery
then a user lookup becomes only a handful of db4 btree
or hash lookups.

Mounted postgresql functions allow efficient access to
relational data from XQuery. Postgresql function ar-
guments are passed through the file path from XQuery
variables. This is a reasonable stop gap to being able
to use prepared SQL statements with arguments as a
filesystem. If the result is only a hand full of tuples with
it will be very quick for libferris to make available to the
xquery as a native document model.

A postgresql function is setup as shown in Figure 8.
This can subsequently be used as any other read only
filesystem as shown in Figure 9. A simple XQuery is
shown in Figure 10 and its evaluation in Figure 11.

A major area which is currently optimized in the eval-
uation of XQuery with libferris is the evaluation of
XPath expressions. This is done in the Node::
getAxisResult() method specifically when the
axis is XQStep::CHILD. Both files and direc-
tories are represented as Context objects in libfer-
ris. When seeking a specific child node Context::

isSubContextBound() is used to quickly test if such
a child exists. The isSubContextBound() method
indirectly calls Context::priv_getSubContext()

which is where filesystem plugins can offer the ability
to read a directory piecewise.

The normal opendir(3), readdir(3) sequence of events
to read a directory can be preempted by calls to
Context::priv_getSubContext() to discover
partial directory contents. As libferris is a virtual
filesystem some other filesystem implementations also
implement Context::priv_getSubContext() and
piecewise directory reading. A specific example is the
db4 filesystem which allows very efficient loading of a
hand full of files from a large directory.

Where the direct evaluation on a filesystem as shown
above becomes too slow the filesystem indexes can also
be used in an XQuery by making an XPath that uses the
filesystem interface to queries shown in Fig. 6.

A more complete example is shown in Figure 12. This
uses the filesystem index and search along with XQuery
variables to search for files which contain a person in
a given location as a boolean AND style full text query.
Note that multiple use of indexes, in particular the use
of federated filesystem indexes [11] is possible together
with immediate evaluation of other queries on db4 or
RDF files to generate a combined result.

5 The Future

Closer integration of XML and libferris and in partic-
ular the ability to arbitrarily stack the two in any or-
der. For example, being able to run an XQuery and
take its results as the input to xsltfs:// to gener-
ate an office document to edit with Open Office. As
xsltfs:// does not enforce a strict isomorphism be-
tween filesystems the resulting document when edited
and saved could effect changes on both the underlying
filesystem objects that the XQuery dealt with as well as
any other desired side effects.

More efficient and user friendly access to the Formal
Concept Analysis in libferris. There are still some com-
plex persistence and processing tasks which need to be
improved before the use of FCA on filesystems will see
broad adoption.

References

[1] Fuse, http://fuse.sf.net. Visited Fed 2007.



310 • Everything is a virtual filesystem: libferris

# All files modified recently
$ ferrisls -lh "eaq://(mtime>=begin last week)"

# Same as above but limited to 100 results
# as an XML file
$ ferrisls --xml \
"eaquery://filter-100/(mtime>=begin last week)"

# limit of 10,
# resolve conflicts with version numbers
# include the desired metadata in the XML result
$ ferrisls --xml \

--show-ea=mtime-display,url,size-human-readable \
"eaquery://filter-shortnames-10/(mtime>=blast week)"

Figure 6: Query results as a filesystem.

Figure 7: Concept lattice for SELinux type and identity of files in /usr/share/ on a Fedora Core 4 Linux installation.
The Hasse diagram is arranged with three major sections; direct parents of the root are in a row across the top,
refinements of selinux_identity_system_u are down the right side with combinations of the top row in the middle and
left of the diagram. Attribute are shown above a node and they apply transitively to all nodes reachable downwards.
The number of files in each node is shown below it.



2007 Linux Symposium, Volume One • 311

$ psql junkdb
# CREATE TYPE junk_result

AS (f1 int, f2 text);
# drop function junk( int, int );
# CREATE FUNCTION junk( int, int )

returns setof junk_result
AS
$BODY$
DECLARE

iter int;
rec junk_result;
BEGIN

iter = $1;
for rec in select $1*10,$2*100 union

select $1 * 100, $2 * 1000
LOOP

return next rec;
END LOOP;
return;
END;
$BODY$

LANGUAGE ’plpgsql’ ;
# exit

Figure 8: Setting up a PostgreSQL function to be mounted by libferris

$ ferrisls --show-ea=f1,f2,name --xml
"postgresql://localhost/play/junk(1,2)"
<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<ferrisls>

<ferrisls f1="" f2="" name="junk(1,2)"
url="postgresql:///localhost/play/junk(1,2)">

<context f1="10" f2="200" name="10-200"/>
<context f1="100" f2="2000" name="100-2000"/>

</ferrisls>

</ferrisls>

$ fcat postgresql://localhost/play/junk(1,2)/10-200
...

$ ferriscp \
postgresql://localhost/play/junk(1,2)/10-200 \
/tmp/plan8.xml

Figure 9: Viewing the output of a PostgreSQL function with ferrisls

$ cat fdoc-pg.xq
<data>
{
for $b in ferris-doc("postgresql://localhost/play/junk(1,2)")
return $b

}
</data>

Figure 10: A Trivial XQuery to show the output of calling a PostgreSQL function through libferris



312 • Everything is a virtual filesystem: libferris

$ ferris-xqilla --show-ea=f1,f2,name fdoc-pg.xq
<?xml version="1.0"?>
<data>

<junk_oper_1_comma_2_cper_ name="junk(1,2)">10,200
<number_10_dash_200 f1="10" f2="200" name="10-200">
&lt;context f1="10" f2="200" /&gt;
</number_10_dash_200>
<number_100_dash_2000 f1="100" f2="2000" name="100-2000">
&lt;context f1="100" f2="2000" /&gt;
</number_100_dash_2000></junk_oper_1_comma_2_cper_>
</data>

Figure 11: The evaluation of the XQuery in Figure 10. The embedded &lt; etc. shown below come from the
“content” of the file which in this case is the same as the above ferrisls command.

$ cat xquery-index.xq
declare variable $qtype := "boolean";
declare variable $person := "alice";
declare variable $location := "wonderland";
<data>
{
for $idx in ferris-doc( concat("fulltextquery://", $qtype, "/",

$person, " ", $location))
for $res in $idx/*

return
<match

name="{ $res/@name }" url="{ $res/@url }"
modification-time="{ $res/@mtime-display }"

>
</match>

}
</data>

$ ferris-xqilla xquery-index.xq
<?xml version="1.0"?>
<data>

<match modification-time="99 Jul 27 12:53"
name="file:///.../doc/CommandLine/command.txt ...>

<match modification-time="00 Mar 11 06:58"
name="file:///.../doc/Gimp/Grokking-the-GIMP-v1.0/node8.html
...>

...</data>

Figure 12: Running an XQuery which uses filesystem index and search. The idx XQuery variable will be the
virtual directory containing the query results and for the sake of clarity the idx is then looped over explicitly in
the XQuery. The person and location can easily be obtained from other sources making the fulltext query portion
complement a larger information goal.



2007 Linux Symposium, Volume One • 313

[2] libferris, http://witme.sf.net/libferris.web/. Visited
Nov 2005.

[3] Bernhard Ganter and Rudolf Wille. Formal
Concept Analysis — Mathematical Foundations.
Springer–Verlag, Berlin Heidelberg, 1999.

[4] David K. Gifford, Pierre Jouvelot, Mark A.
Sheldon, and James W. Jr O’Toole. Semantic file
systems. In Proceedings of 13th ACM Symposium
on Operating Systems Principles, ACM SIGOPS,
pages 16–25, 1991.

[5] Network Working Group. Rfc 2254 - the string
representation of ldap search filters,
http://www.faqs.org/rfcs/rfc2254.html. Visited
Sep 2003.

[6] Angelike Langer and Klaus Kreft. Standard C++
IOStreams and Locales: Advanced programmer’s
Guide and Reference. Addison Wesley, Reading,
Massachusetts 01867, 2000.

[7] Ben Martin. File system wide file classification
with agents. In Australian Document Computing
Symposium (ADCS03). University of Queensland,
2003.

[8] Ben Martin. Formal concept analysis and
semantic file systems. In Peter W. Eklund, editor,
Concept Lattices, Second International
Conference on Formal Concept Analysis, ICFCA
2004, Sydney, Australia, Proceedings, volume
2961 of Lecture Notes in Computer Science,
pages 88–95. Springer, 2004.

[9] Ben Martin. Filesystem indexing with libferris.
Linux Journal, 2005(130):7, 2005.

[10] Ben Martin. A virtual filesystem on steroids:
Mount anything, index and search it. In
Proceedings of the 12th International Linux
System Technology Conference (Linux-Kongress
2005). GUUG e.V. / Lehmanns / Ralf Spenneberg,
2005.

[11] Ben Martin. Federated desktop and file server
search with libferris. Linux Journal, 2006(152):8,
2006.

[12] Ben Martin. Geotagging files with libferris and
google earth (linux.com), April 2006.

[13] Ben Martin. The world is a libferris filesystem.
Linux Journal, 2006(146):7, 2006.

[14] Ben Martin. Virtual filesystems are virtual office
documents. Linux Journal, 2007(154):8, 2007.

[15] Ben Martin and Peter W. Eklund. Spatial
indexing for scalability in fca. In Rokia Missaoui
and Jürg Schmid, editors, ICFCA, volume 3874 of
Lecture Notes in Computer Science, pages
205–220. Springer, 2006.

[16] Ben Martin and Peter W. Eklund. Custom
asymmetric page split generalized index search
trees and formal concept analysis. In ICFCA,
2007.

[17] Ian H. Witten, Alistar Moffat, and Timothy C.
Bell. Managing Gigabytes: Compressing and
Indexing Documents and Images. Morgan
Kaufmann, 340 Pine Street, San Francisco, CA
94104-3205, USA, 1999.



314 • Everything is a virtual filesystem: libferris



Proceedings of the
Linux Symposium

Volume One

June 27th–30th, 2007
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Martin Bligh, Google
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
John Feeney, Red Hat, Inc.
Len DiMaggio, Red Hat, Inc.
John Poelstra, Red Hat, Inc.


