
Efficient Use of the Page Cache with 64 KB Pages

Dave Kleikamp
IBM Linux Technology Center
shaggy@austin.ibm.com

Badari Pulavarty
IBM Linux Technology Center

pbadari@us.ibm.com

Abstract

In order for 64-bit processors to efficiently use
large address spaces while maintaining lower
TLB miss rates, the Linux R© kernel can be
configured with base page sizes up to 64 KB.
While this benefits access to large memory seg-
ments and files, it greatly reduces the number of
smaller files that can be resident in memory at
one time. This paper proposes a change to the
Linux kernel to allow file data to be more effi-
ciently stored in memory when the size of the
file, or the data at the end of a file, is signifi-
cantly smaller than the page size.

1 Introduction

While 64 KB page support is not the primary
topic of discussion in this paper, it does intro-
duce the problem we are trying to address. We
will take a quick look at rationale for using a
larger page size.

1.1 Why use 64 KB pages?

Many processors use a fixed-size Translation
Lookaside Buffer (TLB) to translate from vir-
tual to physical addresses. This is a cache con-
taining information from the kernel’s page ta-
bles. When the needed TLB entry is not present

for a memory translation, a TLB Miss occurs
and the processor must go through an expensive
operation of traversing the page tables and load
the entry into the TLB [2]. While the amount
of physical memory supported in recent sys-
tems has increased significantly, the TLB sizes
remain relatively small. TLB coverage, the
amount of memory accessible through cached
mappings without incurring TLB misses, is
becoming an important factor for applications
with large working sets [1].

The use of larger page sizes is a well-known
technique to reduce TLB misses. Linux’s huge
page support (hugetlbfs) is explicitly de-
veloped for this purpose. Unfortunately, huge
pages require special handling and are too big
for many uses.

Besides translation, the efficiency of page fault
handling can be improved with larger page
sizes. Due to a larger page size, applications
end up requiring fewer page faults. A larger
page size could also benefit hardware prefetch-
ing.

Performance analysis of various industry stan-
dard benchmarks showed significant gains (8-
20%) with 64 KB page support.

1.2 Page Cache Fragmentation

An unfortunate side effect of a larger page size
is internal fragmentation in the page cache. The



66 • Efficient Use of the Page Cache with 64 KB Pages

page cache will allocate a minimum of one
page to cache the contents of a small file. The
memory between the logical end of file and the
end of the last page needed to cache the file
is lost to fragmentation. When the page size
is 4 KB, the fragmentation cost cannot exceed
4K−1 bytes for any given file. With a page size
of 64 KB, the fragmentation cost of a single file
may be as great as 64K−1 bytes.

This paper discusses changes to the page cache
to allocate storage for file tails from a memory
pool, allowing more efficient use of memory.

As of this writing, this project is at an early
stage of development. There is no working pro-
totype yet, but we expect to have a reasonable
implementation and results in time for the pre-
sentation.

2 Alternate Approaches

Our initial goal was to separate the page cache
from the page size. We considered making the
page cache aware of multiple page sizes, the
base page size and some smaller fragment size.
One problem with this approach is how to rep-
resent the fragment. The simplest solution is to
use the page structure. For a normal page, the
kernel typically uses the page struct’s position
in the page table in order to determine the phys-
ical address of the page data. If we were to use
the page struct to represent the fragment, we
would have to add at least one more field into
the structure to point to the backing storage.
Every effort is made to keep the page struct as
small as possible. Using a new structure to rep-
resent the fragment is also problematic. A lot
of code within the Virtual File System (VFS)
layer and the file systems themselves operate
on the page struct. Any change to use another
structure would prove to be very intrusive.

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

Inode
i_size = 9000

Mapping

0 4K 8K

File’s Address Space

Page Cache

Figure 1: File Read into Page Cache

3 File Tails

Any file that has data resident in memory is
represented by an inode, which in turn con-
tains a data structure called a mapping. The
mapping describes the address space of the
file. Conceptually, the address space is a linear
representation of a file bounded by the limits of
the file; between offset zero and the size of the
file (found in i_size in the inode).

For the majority of file systems in the Linux
kernel, the data for the file is buffered in the
page cache. The pages within the page cache
are aligned to the address space of the file, and
I/O is typically performed at the page level.
When some data is read from disk, the ker-
nel reads all the data in the pages that contain
the data. There may be holes within the page,
where no data is allocated on disk. In this case,
the part of the page corresponding to the holes
is zeroed. Likewise, when writing to disk, all
dirty data within the pages containing the writ-
ten data are written at one time.

Depending on the size of the file, the last page



2006 Linux Symposium, Volume Two • 67

within the address space of the file is usually
only partially filled. (The remainder of the page
is zero-filled, in case the file is extended.) This
part of the file is what we call the File Tail. In
the case of a file smaller than the base page size,
the entire contents of the file will be in the tail.

When the page size is 4 KB, there is relatively
little wasted memory in the page cache. For
each cached file, less than 4 KB will be wasted
between the end of the file and the end of the
page containing the tail. When we switch to
a 64 KB page size, each non-empty file will
still require a minimum of one page to store the
file data, but the space wasted in the page cache
for each file may approach 64 KB. This will re-
sult in fewer files being able to be cached in the
same amount of memory.

���
���
���

���
���
���

Memory unused due to fragmentation

File 1 File 2 File 3

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

Figure 2: Page Cache Fragmentation with 4 KB
pages

3.1 Alternate Storage for File Tails

We propose to provide an alternate method for
caching the file tails. When the tail is suffi-
ciently small, a buffer will be allocated from
one or more memory pools, and a pointer to the
buffer stored in the file’s mapping.

In the case of a read, file system code (primarily
in mm/filemap.c) will determine if the tail
is resident in memory. If it is not, it will allocate
the tail and read the data from disk. Then it will

���
���
���

���
���
���

Memory unused due to fragmentation

File 1

File 2

File 3

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������
�����������������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Figure 3: Page Cache Fragmentation with 64
KB pages

copy the data from the tail buffer to the user
buffer.

In the event that a full page is needed, the tail
would be unpacked into a full page. Memory-
mapping a region of a file containing the tail,
writing to the tail, or an operation that increases
the size of the file constitute actions that would
require the tail be backed by a full page. Un-
packing the tail consists of allocating a page,
adding it to the page cache, copying the data
from the tail buffer, zeroing the remainder of
the page, and freeing the tail buffer.

3.2 Tail Allocation

Since the file tails will differ in size, and we
want to store the tails as efficiently as possi-
ble, a single sized tail buffer will not satisfy our
requirements. Two approaches we considered
for addressing the issue are: piecing together a
number of fixed sized buffers sufficient to store



68 • Efficient Use of the Page Cache with 64 KB Pages

Inode
i_size = 70000

Mapping

0

File’s Address Space

Page Cache

64K

Tail

Figure 4: Tail Storage

the tail; or allocating the tail buffers from pools
of different sized buffers.

The first approach requires storing pointers to
multiple data buffers to store the tail. This
could be done with either an array of point-
ers, or a linked list. The size of an array
would depend on the fixed size of the indi-
vidual buffers and the maximum length of a
tail that we choose to store. For instance if
we store the tails in 4 KB buffers, and choose
tails that are 32 KB or smaller, we would need
8 members in the array. This array would
either need to be stored within the mapping
(struct address_space) or in a separately
allocated buffer.

A linked list could handle any sized tail, but
the list heads would need to be allocated some-
where. The obvious solution would be to al-
locate the list head and data buffer in a single
allocation.

Mapping

Inode

Mapping

Inode

Mapping

Inode

Figure 5: Tail in fixed-sized buffers

Mapping

Inode

Mapping

Inode

Mapping

Inode

Mapping

Inode

Slab Cache

Figure 6: Tail in variable-sized buffers

The second approach allows each tail to be
stored in one contiguous buffer. It requires a
more complex allocator to allow different sized
buffers to be allocated efficiently. Fortunately,
such an allocator exists in kmalloc. For the
initial implementation, we chose to simply use
kmalloc and kfree.

Note that storing the tail data in the slab cache
will always put it in low memory. This is not a
real concern, since hardware supporting larger
page sizes is 64-bit, so all physical memory is
considered low memory. As is explained in the



2006 Linux Symposium, Volume Two • 69

next section, other design decisions are likely
to make this feature incompatible with high-
memory kernels in any case.

3.3 Tail I/O

Ideally, we want to avoid changing the file sys-
tem interface. Reading file data is typically
done through the readpage() address space
operation which takes a page struct as an ar-
gument.

A simple, but inefficient, solution would be to
read the data normally through the page cache,
and pack the tail afterward. The disadvantage
is the extra overhead involved in allocating the
page, and copying the data. The ability to hold
more small files in cache would probably jus-
tify this overhead if a better solution did not
exist.

One solution is to allocate a dummy page
struct that could be passed to readpage().
A new bitflag in page->flags would mark
the page as a special container for the tail.
kmap() and kmap_atomic() would have
to be modified to recognize the flag, and return
page->mapping->tail for the tail page.
The use of the dummy page struct would have
other benefits as well. The tail could then truly
be represented in the page cache by having the
page struct inserted into the radix tree. Note
that the buffer allocated for the tail will need to
be rounded up to the file system’s block size, as
I/O is performed in full disk blocks.

If such an approach were taken, the kernel con-
figuration would have to ensure that the file
tail support not be enabled on a high-memory-
capable kernel. Although kmap() and kmap_
atomic() may be easy to implement for tail
pages, kunmap() and kunmap_atomic()
do not take the page as an argument, and it
would be difficult to guarantee their proper be-
havior.

A third possible approach to performing I/O
on the tail data would be to introduce a new
method to the address space operations that
takes a pointer to a data buffer as an argument,
rather than a page. This would require changes
to any file system that wanted to take advan-
tage of this feature, and will only be considered
if other options turn out to be unworkable.

4 Limitations

As stated in the previous section, the imple-
mentation may depend on the kernel being built
without high-memory support. Since this fea-
ture is primarily designed to address issues re-
lated to a large base page size, which are only
implemented on 64-bit architectures, it is un-
likely that this restriction will be problematic.

It is not a primary goal to support writing to
packed tails. Any writes near the end of a file
are likely to be followed by further writes that
will extend past the end of the file forcing the
tail to be unpacked anyway. However, we won’t
rule out the possibility of supporting this if it
can be implemented with no additional over-
head or complexity.

Memory-mapping a section of a file contain-
ing the tail will also result in the tail being
unpacked. Protection is enforced per-page, so
mapping a tail into an address space requires
the tail be unpacked.

5 Future Work

As of this writing, the project is in a very early
state, so much of what is described above can
be considered future work. By the time this pa-
per is presented, we expect to have a working
code and performance results that we hope will
justify our effort.



70 • Efficient Use of the Page Cache with 64 KB Pages

5.1 Page Allocation Revisited

We may want to re-evaluate the mechanism for
allocating the tail buffers. Since the kmalloc
slab is used as a general purpose memory al-
locator, data for the tails may be interspersed
with other data within a physical page. File
tails are easily reclaimable, so using a sepa-
rate allocator is more likely to allow reclaim to
free complete pages. It may prove to be bene-
ficial to define several independent slab caches
of different sizes that would be used only for
tail buffers.

5.2 Memory Map Support

We may want to investigate whether it would
be possible to allow some degree of memory
mapping support against a tail. At the very least
we should be able to delay unpacking the tail
until the corresponding page is first referenced.

5.3 Tail Repacking

Data at the end of a file may occupy a full
page if it had been recently written or memory-
mapped. If the data has been written, leaving
the page no longer dirty, or the page is no longer
memory-mapped, it may be useful to pack the
data into a tail buffer.

This would reduce the memory usage for these
cached files, and increase the chance that the
data will still be in memory if it is accessed
again. A good heuristic is needed to ensure that
tails are not packed and unpacked too often.

6 Conclusion

This paper proposes a solution to the problem
of internal fragmentation in the page cache on

kernels with a large page size. We intend to im-
plement the proposal and present performance
results on a number of industry standard bench-
marks. We believe that this work will make it
possible for more workloads to benefit from a
large page size.

Legal Statement

This work represents the view of the author and
does not necessarily represent the view of IBM.

IBM is a registered trademark of International
Business Machines Corporation in the United
States.

Linux is a registered trademark of Linus Tor-
valds in the United States, other countries, or
both.

References

[1] Juan Navarro, Sitaram Iyer, Peter
Druschel, and Alan Cox. Practical,
transparent operating system support for
superpages. Proceedings of the 5th
Symposium on Operating Systems Design
and Implementation, December 2002.
http://www.usenix.org.

[2] Simon Winwood, Yefim Shuf, and
Hubertus Franke. Multiple page size
support in the linux kernel. Proceedings of
the Ottawa Linux Symposium, June 2002.



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


