
Why NFS Sucks

Olaf Kirch
SUSE/Novell, Inc.
okir@suse.de

Abstract

NFS is really the distributed file system in the
Unix world—and at the same time it is prob-
ably also one of its most reviled components.
For just about every Suse release, there’s a bug
in our bugzilla with a summary line of “NFS
sucks.” NFS even has a whole chapter of its
own in the Unix Haters’ Handbook. And hav-
ing hacked quite a bit of NFS code over the
course of 8 years, the author cannot help agree-
ing that NFS as a whole does have a number of
warts.

This presentation is an attempt at answering
why this is so. It will take a long look at some
of the stranger features of NFS, why they came
into existence, and how they affect stability,
performance and POSIX conformance of the
file system. The talk will also present some his-
torical background, and compare NFS to other
distributed file systems.

The author feels compelled to mention that this
is not a complaint about the quality of the Linux
NFS implementation, which is in fact pretty
good.

1 History

One of the earliest networked file systems
was RFS, the Remote File System included in

SVR3. It was based on a concept called “Re-
mote System Calls,” where each system call
was mapped directly to a call to the server sys-
tem. This worked reasonably well, but was
largely limited to SVR3 because of the SVR3
system call semantics.

Another problem with RFS was that it did not
tolerate server crashes or reboots very well.
Due to the design, the server had to keep a lot
of state for every client, and, in fact, for every
file opened by a client. This state could not be
recovered after a server reboot, so when an RFS
server went down, it usually took all its clients
with it.

This early experience helps to understand some
of the design decisions made in first NFS ver-
sion developed by Sun in 1985. This was NFS
version 2, and was first included in SunOS 2.0.
Rumors have it that there was also a version 1,
but it never got released to the world outside
Sun.

NFSv2 attempted to address the shortcomings
of RFS by making the server entirely stateless,
and by defining a minimal set of remote pro-
cedures that provided a basic set of file system
operations in a way that was a lot less operating
system dependent than RFS. It also tried to be
agnostic of the underlying file system, to a de-
gree that it could be adapted to different Unix
file systems with relative ease (doing the same
for non-Unix file systems proved harder).



52 • Why NFS Sucks

One of the shortcomings of NFSv2 was its lack
of cache consistency. NFS makes no guaran-
tees that all clients looking at a file or directory
see exactly the same content at any given mo-
ment. Instead, each client sees a snapshot of a
file’s state from a hopefully not too distant past.
NFS attempts to keep this snapshot in sync with
the server, but if two clients operate on a single
file simultaneously, changes made by one client
usually do not become visible immediately on
the other client.

In 1988, Spritely NFS was released, which
extended the protocol to add a cache consis-
tency mechanism to NFSv2. To achieve this,
it sacrificed the server’s statelessness, so that it
was generally impossible for a client to recover
from a server crash. Crash recovery for Spritely
NFS was not added until 6 years later, in 1994.

At about the same time, NQNFS (the “Not-
Quite NFS”) was introduced in 4.4 BSD.
NQNFS is a backward compatible protocol ex-
tension that adds the concept of leases to NFS,
which is another mechanism to provide cache
consistency. Unfortunately, it never gained
wide acceptance outside the BSD camp.

In 1995, the specification of NFSv3 was pub-
lished (written mostly by Rick Macklem, who
also wrote NQNFS). NFSv3 includes several
improvements over NFSv2, most of which can
be categorized as performance enhancements.
However, NFSv3 did not include any cache
consistency mechanisms.

The year 1997 saw the publication of a standard
called WebNFS, which was supposed to posi-
tion NFS as an alternative to HTTP. It never
gained any real following outside of Sun, and
made a quiet exit after the Internet bubble burst.

The latest development in the NFS area is
NFSv4, the first version of this standard was
published in 2002. One of the major goals in

the design of NFSv4 was to facilitate deploy-
ment over wide area networks (making it an
“Internet Filesystem”), and to make the under-
lying file system model less Unix centric and
provide better interoperability with Microsoft
Windows. It is not an accident that the NFSv4
working group formed at about the same time
as Microsoft started rebranding their SMB file
sharing protocol as the “Common Internet File
System.”

2 NFS File Handles

One of the nice things about NFS is that it al-
lows you to export very different types of file
systems to the world. You’re not stuck with a
single file system implementation the way AFS
does, for instance. NFS does not care if it is
reiser, ext3 or XFS you export, a CD or a DVD.

A direct consequence of this is that NFS needs
a fairly generic mechanism to identify the ob-
jects residing on a file system. This is what file
handles are for. From the client’s perspective,
these are just opaque blobs of data, like a magic
cookie. Only the server needs to understand the
internal format of a file handle. In NFSv2, these
handles were a fixed 32 bytes; NFSv3 makes
them variable sized up to 64 bytes, and NFSv4
doubles that once more.

Another constraint is related to the statelessness
paradigm: file handles must be persistent, i.e.
when the server crashes and reboots, the file
handles held by its clients must still be valid, so
that the clients can continue whatever they were
doing at that moment (e.g. writing to a file).

In the Unix world of the mid-80s and early 90s,
a file handle merely represented an inode—and
in fact in most implementations—the file han-
dle just contained the device and inode num-
ber of the file it represented (plus some ad-
ditional export identification we will ignore



2006 Linux Symposium, Volume Two • 53

here). These handles went very well with the
statelessness paradigm, as they remained valid
across server reboots.

Unfortunately, this sort of mechanism does not
work very well for all file systems; in fact, it is a
fairly Unix centric thing to assume that files can
be accessed by some static identifier, and with-
out going through their file system path name.
Not all file systems have a notion of a file inde-
pendent from its path (the DOS and early Win-
dows file systems kept the “inode” information
inside the directory entry), and not all operating
systems will operate on a disconnected inode.
Also, the assumption that an inode number is
sufficient to locate a file on disk was true with
these older file systems, but that is no longer
valid with more recent designs.

These assumptions can be worked around to
some degree, but these workarounds do not
come for free, and carry their own set of prob-
lems with them.

The easiest to fix is the inode number
assumption—current Linux kernels allow file
systems to specify a pair of functions that return
a file handle for a given inode, and vice versa.
This allows XFS, reiser and ext3 to have their
own file handle representation without adding
loads of ugly special case code to nfsd.

There is a second problem though, which
proved much harder to solve. Some time in the
1.2 kernel or so, Linux introduced the concept
of the directory cache, aka the dcache. An entry
in the dcache is called a dentry, and represents
the relation between a directory and one of its
entries. The semantics of the dcache do not
allow disconnected inode data floating around
in the kernel; it requires that there is always a
valid chain of dentries going from the root of
the file system to the inode; and virtually all
functions in the VFS layer expect a dentry as
an argument instead of (or in addition to) the
inode object they used to take.

This made things interesting for the NFS server,
because the inode information is no longer suf-
ficient to create something that the VFS layer is
willing to operate on—now we also need a little
bit of path information to reconstruct the dentry
chain. For directories this is not hard, because
each directory of a Unixish file system has a
file named “..” that takes you to the parent
directory. The NFS server simply has to walk
up that chain until it hits the file system root.
But for any other file system object, including
regular files, there is no such thing, and thus the
file handle needs to include an identifier for the
parent directory as well.

This creates another interesting dilemma,
which is that a file hard linked into several di-
rectories may be represented by different file
handles, depending on the path it is accessed
by. This is called aliasing and, depending on
how well a client implementation handles this,
may lead to inconsistencies in a client’s at-
tribute or data cache. Even worse, a rename
operation moving a file from one directory to
another will invalidate the old file handle.

As an interesting twist, NFSv4 introduces the
concept of volatile file handles. For these file
handles, the server makes no promises about
how long it will be good. At any time, the
server may return an error code indicating to
the client that it has to re-lookup the handle. It
is not clear yet how well various NFSv4 are ac-
tually able to cope with this.

3 Write operations: As Slow as it
Gets

Another problem with statelessness is how to
prevent data loss or inconsistencies when the
server crashes hard. For instance, a server may
have acknowledged a client operation such as



54 • Why NFS Sucks

the creation of a file. If the server crashes be-
fore that change has been committed to disk,
the client will never know, and it is in no posi-
tion to replay the operation.

The way NFS solved this problem was to man-
date that the server commits every change to
disk before replying to the client. This is not
that much of a problem for operations that usu-
ally happen infrequently, such as file creation
or deletion. However, this requirement quickly
becomes a major nuisance when writing large
files, because each block sent to the server is
written to disk separately, with the server wait-
ing for the disk to do its job before it responds
to the client.

Over the years, different ways to take the edge
off this problem were devised. Several compa-
nies sold so-called “NFS accelerators,” which
was basically a card with a lot of RAM and
a battery on it, acting as an additional, persis-
tent cache between the VFS layer and the disk.
Other approaches involved trying to flush sev-
eral parallel writes in one go (also called write
gathering). None of these solutions was en-
tirely satisfactory, and therefore, virtually all
NFS implementations provide an option for the
administrator to turn off stable writes, trading
performance for a (small) risk of data corrup-
tion or loss.

NFSv3 tries to improve this by introducing a
new writing strategy, where clients send a large
number of write operations that are not writ-
ten to disk directly, followed by a “commit”
call that flushes all pending writes to disk. This
does afford a noticeable performance improve-
ment, but unfortunately, it does not solve all
problems.

On one hand, NFS clients are required to keep
all dirty pages around until the server acknowl-
edged the commit operation, beecause in case
the server was rebooted, they need to replay
all these write operations. This means, commit

calls need to happen relatively frequently (once
every few Megabytes). Second, a commit oper-
ation can become fairly costly—RAIDs usually
like writes that cover one or more stripes, and
it helps if the client is smart enough to align
its writes in clusters of 128K or more. Second,
some journaling file systems can have fairly big
delays in sync operations. If there is a lot of
write traffic, it is not uncommon for the NFS
server to stall completely for several seconds
because all of its threads service commit re-
quests.

What’s more, some of the performance gain
in using write/commit is owed to the fact that
modern disk drives have internal write buffers,
so that flushing data to the disk device really
just sends data to the disk’s internal buffers,
which is not sufficient for the type of guarantee
NFS is trying to give. Forcing the block device
to actually flush its internal write cache to disk
incurs an additional delay.

4 NFS over UDP—Fragmentation

Another “interesting” feature of NFSv2 was
that the original implementations supported
only UDP as the transport protocol. NFS over
TCP did not come into widespread use until the
late 1990s.

There have been various issues with the use
of UDP for NFS over the years. At one
point, some operating system shipped with
UDP checksums turned off by default, presum-
ably for performance reasons. Which is a rather
bad thing to do if you’re doing NFS over UDP,
because you can easily end up with silent data
corruption that you will not notice until it is
way too late, and the last backup tape having
a correct version of your precious file has been
overwritten.



2006 Linux Symposium, Volume Two • 55

A more recent problem with UDP has to do
with fragmentation. The lower bound for the
NFS packet size that makes sense for reads and
writes is given by the client’s page size, which
is 4096 for most architectures Linux runs on,
and 8192 is a rather common choice these days.
Unless you’re using jumbograms (i.e. Ethernet
frames of up to 9000 bytes), these packets get
fragmented.

For those not familiar with IP fragmentation,
here it is in a nutshell: if the sending system
(or, in IPv4, any intermediate router) notices
that an IP packet is too large for the network in-
terface it needs to send this out to, it will break
up the packet into several smaller pieces, each
with a copy of the original IP header. In order
so that the receiving system can tell which frag-
ments go together, the sending system assigns
each packet a 16bit identifier, the IPID. The
receiver will lump all packets with matching
source address, destination address and IPID
into one fragment chain, and when it finds it
has received all the pieces, it will stitch them
together and hand them to the network stack for
further processing. In case a fragment gets lost,
there is a so-called reassembly timeout, default-
ing to 30 seconds. If the fragment chain is not
completed during that interval, it will simply be
discarded.

The bad thing is, on today’s network hardware,
it is no big deal to send more than 65535 pack-
ets in under 30 seconds; in fact it is not un-
common for the IPID counter to wrap around
in 5 seconds or less. Assume a packet A, con-
taining an NFS READ reply is fragmented as
say A1,A2,A3, and fragment A2 is lost. Then
a few seconds later another NFS READ reply
is transmitted, which receives the same IPID,
and is being fragmented as B1,B2,B3. The re-
ceiver will discard fragment B1, because it al-
ready has a fragment chain for that IPID, and
the part of the packet represented by B1 is al-
ready there. Then it will receive B2, which is

exactly the piece of the puzzle that is missing,
so it considers the fragment chain complete and
reassembles a packet out of A1,B2,A3.

Fortunately, the UDP checksum check will usu-
ally catch these botched reassemblies. But not
all of them—it is just another 16bit quantity, so
if the above happens a few thousand times, the
probability of a matching checksum is decid-
edly non-zero. Depending on your hardware
and test case, it is possible to reproduce silent
data corruption within a few days or even a few
hours.

Starting with kernel version 2.6.16, Linux has
some code to protect from the ill side effects of
IPID wraparound, by introducing some sort of
sliding window of valid IPIDs. But that is really
more of a band-aid than a real solution. The
better approach is to use TCP instead, which
avoids the problem entirely by not fragmenting
at all.

5 Retransmitted Requests

As UDP is an unreliable protocol by design,
NFS (or, more specifically, the RPC layer)
needs to deal with packet loss. This creates all
sorts of interesting problems, because we basi-
cally need to do all the things a reliable trans-
port protocol does: retransmitting lost packets,
flow control (if the NFS implementation sup-
ports sending several requests in parallel), and
congestion avoidance. If you look at the RPC
implementation in the Linux kernel, you will
find a lot of things you may be familiar with
from a TCP context, such as slow start, or es-
timators for round-trip times for more accurate
timeouts.

One of the less widely known problems with
NFS over UDP however affected the file sys-
tem semantics. Consider a request to remove



56 • Why NFS Sucks

a directory, which the server dutifully per-
formed and acknowledged. If the server’s reply
gets lost, the client will retransmit the request,
which will fail unexpectedly because the direc-
tory it is supposed to remove no longer exists!

Requests that will fail if retransmitted are called
non-idempotent. To prevent these from fail-
ing, a request replay cache was introduced in
the NFS server, where replies to the most re-
cent non-idempotent requests are cached. The
NFS server identifies a retransmitted request by
checking the reply cache for an entry with the
same source address and port, and the same
RPC transaction ID (also known as the XID, a
32bit counter).

This provides reasonable protection for NFS
over UDP as long as the cache is big enough
to hold replies for the client’s maximum re-
transmit timeout. As of the 2.6.16 kernel, the
Linux server’s reply cache is rather too small,
but there is work underway to rewrite it.

Interestingly, the reply cache is also useful
when using TCP. TCP is not impacted the same
way UDP is, since retransmissions are handled
by the network transport layer. Still, TCP con-
nections may break for various reasons, and the
server may find the client retransmit a request
after reconnecting.

There is a little twist to this story. The TCP pro-
tocol specification requires that the host break-
ing the connection does not reuse the same
port number for a certain time (twice the max-
imum segment lifetime); this is also referred
to as TIME_WAIT state. But usually you do
not want to wait that long before reconnecting.
That means the new TCP connection will orig-
inate from a different port, and the server will
fail to find the retransmitted request in its cache.

To avoid that problem, the sunrpc code in re-
cent Linux kernels works around this by using
a little known method for disconnecting a TCP

socket without going into TIME_WAIT, which
allows it to reuse the same port immediately.

Strictly speaking, this is in violation of the TCP
specification. While this avoids the problem
with the reply cache, it remains to be seen
whether this entails any negative side effects—
for instance, how gracefully intermediate fire-
walls may deal with seeing SYN packets for
a connection that they think ought to be in
TIME_WAIT.

6 Cache Consistency

As mentioned in the first section, NFS makes
no guarantees that all clients see exactly the
same data at all times.

Of course, during normal operation, accessing
a file will show you the content that is actually
there, not some random gibberish. However, if
two or more clients read and write the same file
simultaneously, NFS makes no effort to propa-
gate all changes to all clients immediately.

An NFS client is permitted to cache changes
locally and send them to the server whenever
it sees fit. This sort of lazy write-back greatly
helps write performance, but the flip side is
that everyone else will be blissfully unaware
of these change before they hit the server. To
make things just a little harder, there is also no
requirement for a client to transmit its cached
write in any particular fashion, so dirty pages
can (and often will be) written out in random
order.

And even once the modified data arrives at the
NFS server, not all clients will see this change
immediately. This is because the NFS server
does not keep track of who has a file open for
reading and who does not (remember, we’re
stateless), so even if it wanted it cannot notify



2006 Linux Symposium, Volume Two • 57

clients of such a change. Therefore, it is the
client’s job to do regular checks if its cached
data is still valid.

So a client that has read the file once may con-
tinue to use its cached copy of the file until
the next time it decides to check for a change.
If that check reveals the file has changed, the
client is required to discard any cached data and
retrieve the current copy from the server.

The way an NFS client detects changes to a file
is peculiar as well. Again, as NFS is state-
less, there is no easy way to attach a mono-
tonic counter or any other kind of versioning
information to a file or directory. Instead, NFS
clients usually store the file’s modification time
and size along with the other cache details. At
regular intervals (usually somewhere between
3 to 60 seconds), it performs a so-called cache
revalidation: The client retrieves the current set
of file attributes from the server and compares
the stored values to the current ones. If they
match, it assumes the file has not changed and
the cached data is still valid. If there is a mis-
match, all cached data is discarded, and dirty
pages are flushed to the server.

Unfortunately, most file systems store time
stamps with second granularity, so clients will
fail to detect subsequent changes to a file if they
happen within the same wall-clock second as
their last revalidation. To compound the prob-
lem, NFS clients usually hold on to the data
they have cached as long as they see fit. So
once the cache is out of sync with the server,
it will continue to show this invalid informa-
tion until the data is evicted from the cache to
make room, or until the file’s modification time
changes again and forces the client to invalidate
its cache.

The only consistency guarantee made by NFS
is called close-to-open consistency, which
means that any changes made by you are

flushed to the server on closing the file, and a
cache revalidation occurs when you re-open it.

One can hardly fail to notice that there is a lot of
handwaving in this sort of cache management.
This model is adequate for environments where
there is no concurrent read/write access by dif-
ferent clients on the same file, such as when ex-
porting users’ home directory, or a set of read-
only data.

However, this fails badly when applications
try to use NFS files concurrently, as some
databases are known to do. This is simply
not within the scope of the NFS standards,
and while NFSv3 and NFSv4 do improve some
aspects of cache consistency, these changes
merely allow the client to cache more aggres-
sively, but not necessarily more correctly. For
instance, NFSv4 introduces the concept of del-
egations, which is basically a promise that the
server will notify the client if some other host
opens the file for writing. Provided the server
is willing and able to issue a delegation to the
client, this allows the client to cache all writes
for as long as it holds that delegation. But after
the server revokes it, everyone just falls back to
the old NFSv3 behavior of mtime based cache
revalidation.

There is no really good solution to this prob-
lem; all solutions so far either involve turning
off caching to a fairly large degree, or extend-
ing the NFS protocol significantly.

Some documents recommend turning off
caching entirely, by mounting the file system
with the noac option, but this is really a
desparate measure, because it kills performance
completely.

Starting with the 2.6 kernel, the Linux NFS
client supports O_DIRECT mode for file I/O,
which turns off all read and write caching on a
file descriptor. This is slightly better than us-
ing noac, as it still allows the caching of file



58 • Why NFS Sucks

attributes, but it means applications need to be
modified and recompiled to use it. Its primary
use is in the area of databases.

Another approach to force a file to show a con-
sistent view across different clients is to use
NFS file locking, because taking and releasing
a lock acts as a cache synchronization point. In
fact, in the Linux NFS client, the file unlock op-
eration actually implies a cache invalidation—
so this kind of synchronizyation is not exactly
free of cost either.

Solutions involving changes to the NFS proto-
col include Spritely NFS and NQNFS; but these
should probably considered as mostly research.
It is questionable whether this gap in the NFS
design will ever be addressed, or whether this
is left for others to solve, such as OCFS2, GFS
or Lustre.

7 POSIX Conformance

People writing applications usually expect the
file system to “just work,” and will get slightly
upset if their application behaves differently on
NFS than it does on a local file system. Of
course, everyone will have a slightly different
idea of what “just works” really is, but the
POSIX standard is a reasonable approximation.

NFS never claimed to be fully POSIX compli-
ant, and given its rather liberal cache consis-
tency guarantees, it never will. But still, it at-
tempts to conform to the standard as much as
possible.

Some of the gymnastics NFS needs to go
through in order to do so are just funny when
you look at them. For instance, consider the
utimes call, which can be used by an appli-
cation to set a file’s modification time stamp.
On some kernels, the command cp -p would

not preserve the time stamp when copying files
to NFS. The reason is the NFS write cache,
which usually does not get flushed until the
file is closed. The way cp -p does its job is
by creating the output file and writing all data
first; then it calls utimes to set the modifica-
tion time stamp, and then closes the file. Now
close would see that there were still pend-
ing writes, and flush them out to the server,
clobbering the file’s mtime as a result. The
only viable fix for this is to make sure the NFS
client flushes all dirty pages before performing
the utimes update—in other words, utimes
acts like fsync.

Some other cases are a bit stranger. One such
case is the ability to write to an open unlinked
file. POSIX says an application can open a file
for reading and writing, unlink it, and continue
to do I/O on it. The file is not supposed to go
away until the last application closes it.

This is difficult to do over NFS, since tradition-
ally, the NFS server has no concept of “open”
files (this was added in NFSv4, however). So
when a client removes a file, it will be gone for
good, and the file handle is no longer valid—
and and attempt to read from or write to that
file will result in a “Stale file handle” error.

The way NFS traditionally kludges around this
is by doing what has been dubbed a “silly re-
name.” When the NFS client notices during an
unlink call that one or more applications still
hold an open file descriptor to this file, it will
not send a REMOVE call to the server. Instead,
it will rename the file to some temporary file
name, usually .nfsXXX where XXX is some
hex number. This file will stay around until the
last application closes its open file descriptor,
and only then will the NFS client send the final
REMOVE call to the server that gets rid of this
renamed file.

This sounds like a rather smart sleight of hand,
and it is—up to a point. First off, this does not



2006 Linux Symposium, Volume Two • 59

work across different clients. But that should
not come as a surprise given the lack of cache
consistency.

Things get outright weird though if you con-
sider what happens when someone tries to un-
link such a .nfsXXX file. The Linux client
does not allow this, in order to maintain POSIX
semantics as much as possible. The undesirable
side effect of this is that a rm -rf call will fail
to remove a directory if it contains a file that is
currently open to some application.

But the weirdest part of POSIX conformance
is probably the handling of access control lists,
and as such it deserves a section of its own.

8 Access Control Lists

The POSIX.1e working group proposed a set of
operating system primitives that were supposed
to enhance the Unix security model. Their
work was never finished, but they did create a
legacy that kind of stuck—capabilities and ac-
cess control lists (ACLs) being the promiment
examples of their work.

Neither NFSv2 nor NFSv3 included support
for ACLs in their design. When NFSv2 was
designed, ACLs and mandatory access control
were more or less an academic issue in the Unix
world, so they were simply not part of the spec-
ification’s scope.

When NFSv3 was designed, ACLs were al-
ready being used more or less widely, and ac-
knowledging that fact, a new protocol operation
named ACCESS was introduced, which lets the
client query a user’s permissions to perform a
certain operation. This at least allows a client
to perform the correct access decisions in the
presence of access control lists on the server.

However, people who use ACLs usually want
to be able to view and modify them, too, with-
out having to log on to the server machine. NFS
protocol versions 2 and 3 do not provide any
mechanisms for queries or updates of ACLs
at all, so different vendors devised their own
side-band protocols that added this function-
ality. These are usually implemented as ad-
ditional RPC programs available on the same
port as the NFS server itself. According to var-
ious sources, there were at least four different
ACL protocols, all of them mutually incompat-
ible. So an SGI NFS client could do ACLs
when talking to an SGI NFS server, or a So-
laris client could do the same when talking to a
Solaris server.

Over the course of a few years, it seems the So-
laris ACL protocol has become the prevalent
standard, if just by virtue of eliminating most
of the competition. The Linux ACL implemen-
tation adopted this protocol as well.

NFSv4 adds support for access control lists.
But in its attempt to be a cross-platform dis-
tributed file system, it adopted not the POSIX
ACL model, but invented its own ACLs which
are much closer to the Windows ACL model
(which has richer semantics) than to the POSIX
model. It is not entirely compatible with Win-
dows ACLs either, though.

The result of this is that it is not really easy to
do POSIX ACLs over NFSv4 either: there is
a mapping of POSIX to NFSv4 ACLs, but it
is not really one-to-one, and somewhat awk-
ward. The other half of the problem is that
the server cannot map NFSv4 ACLs back to
POSIX ACLs, since they have much richer se-
mantics. So it stores them in a different ex-
tended attribute, which is not evaluated by the
VFS (which currently does POSIX ACLs only).
As a consequence, NFSv4 ACLs will only be
enforced when the file system is accessed via
NFSv4 at the moment. When accessing it via



60 • Why NFS Sucks

NFSv3 or locally on the server machines, these
ACLs are ignored.

The ironic part of the story is that Sun, which
was one of the driving forces behind the NFSv4
standard, added an NFSv4 version to their ACL
side band protocol which allows querying and
updating of POSIX ACLs, without having to
translate them to NFSv4 ACLs and back.

9 NFS Security

One of the commonly voiced complaints over
NFS is the weak security model of the under-
lying RPC transport. And indeed, security has
never been one of its strong points.

The default authentication mechanism in RPC
is AUTH_SYS, also known as AUTH_UNIX be-
cause it basically conveys Unix style creden-
tials, including user and group ID, and a list of
supplementary groups the user is in. However,
the server has no way to verify these creden-
tials, it can either trust the client, or map all
user and group IDs to some untrusted account
(such as nobody).

Stronger security flavors for RPC have been
around for a while, such as Sun’s “Secure
RPC,” which was based on a Diffie-Hellman
key management scheme and DES cryptogra-
phy to validate a user’s identity. Another se-
curity flavor that was used in some places re-
lied on Kerberos 4 credentials. Both of them
provided only a modicum of security however,
as the credentials were not tied in any way to
the packet payload, so that attackers could in-
tercept a packet with valid credentials and mas-
sage the NFS request to do their own nefarious
biddings. Moreover, the lack of high-resolution
timers on average 1980s hardware meant that
most clients would often generate several pack-
ets with identical time stamps; so the server had

to accept these as legitimate—opening the door
to replay attacks.

A few years ago, a new RPC authentication fla-
vor based on GSSAPI was defined and stan-
dardized; it provides different levels of secu-
rity, ranging from the old-style sort of authenti-
cation restricted to the RPC header, to integrity
and/or privacy. And since GSSAPI is agnostic
of the underlying security system, this authenti-
cation mechanism can be used to integrate NFS
security with any security system that provides
a GSSAPI binding.

The Linux implementation of RPCSEC_GSS

was developed as part of the NFSv4 project. It
currently supports Kerberos 5, but work is un-
derway to extend it to SPKM-3 and LIPKEY.

It is worth noting that GSS authentication is
not an exclusive feature of NFSv4, it can be
enabled separately of NFSv4, and can be used
with older versions of the protocol as well. On
the other hand, there remains some doubt as to
whether there is really such a huge demand for
stronger NFS security, despite the vocal criti-
cism. Secure RPC was not perfect, but it has
been available for ages on many platforms, and
unlike Kerberos it was rather straightforward to
deploy. Still there were not that many site that
seriously made use of it.

10 NFS File Locking

Another operation that was not in the scope of
the original NFS specification is file locking.
Nobody has put forth an explanation why that
was so.

At some point, NFS engineers at Sun recog-
nized that it would be very useful to be able to
do distributed file locking, especially given the
cache consistency semantics of the NFS proto-
col.



2006 Linux Symposium, Volume Two • 61

Subsequently, another side-band protocol
called the Network Lock Manager (NLM for
short) protocol was devised, which implements
lock and unlock operations, as well as the
ability to notify a client when a previously
blocked lock could be granted. NLM requests
are handled by the lockd service.

NLM has a number of shortcomings. Probably
the most glaring one is that it was designed for
POSIX locks only; BSD flock locks are not
supported, since they have somewhat different
semantics. It is possible to emulate these with
NLM, but it is non-trivial, and so far only Linux
seems to do this.

Another shortcoming is that most implemen-
tations do not bother with using any kind of
RPC security with NLM requests, so that a
lockd implementation has no choice but to ac-
cept unauthenticated requests, at least as long
as it wants to interoperate with other operating
systems.

Third, lockd does not only have to run on the
server, it must be active on the client as well.
That is because when a client blocked on a lock
request, and the lock can later be granted, the
server is supposed to send a callback to the
client, so lockd must be active there as well.
This creates all kinds of headaches when doing
NFS through firewalls.

File locking is inherently a stateful operation,
which does not go well with the statelessness
paradigm of the NFS protocol. In order to ad-
dress this, mechanisms for lock reclaim were
added to NLM—if a NFS server reboots, there
is a so-called grace period during which clients
can re-register all the locks they were holding
with the server.

Obviously, in order to make this work, clients
need to be notified when a server reboots. For
this, yet another side-band protocol was de-
signed, called Network Status Monitor or NSM.

Calling it a status monitor is a bit of a mis-
nomer, as this is purely a reboot notification
service. NSM does not use any authentication
either, and it its specification is a bit vague on
how to identify hosts—either by address, which
creates issues with multi-homed hosts, or by
name, which requires that all machines have
proper host names configured, and proper en-
tries in the DNS (which surprisingly often is not
the case).

NFSv4 does a lot better in this area, by finally
integrating file locking into the protocol, and
not relying on RPC callbacks to handle blocked
locks anymore. NFSv4 introduces a different
kind of callback as part of the delegation pro-
cess however, but at least those are optional and
NFSv4 still works in the presence of firewalls.

11 AFS

AFS, the Andrew File System, was originally
developed jointly by Carnegie Mellon Univer-
sity and IBM. It was probably never a huge
success outside academia and research instal-
lations, despite the fact that the Open Group
made it the basis of the distributed file system
for DCE (and charged an arm and a leg for it).
Late in its life cycle, it was released by IBM
under an open source license, which managed
to breathe a little life back into it.

AFS is a very featureful distributed file system.
Among other things, it provides good security
through the use of Kerberos 4, location inde-
pendent naming, and supports migration and
replication.

On the down side, it comes with its own server
side storage file system, so that you cannot sim-
ply export your favorite journaling file system
over AFS. Code portability, especially to 64bit
platforms, and the sort of #ifdef accretion



62 • Why NFS Sucks

that can occur over the course of 20 years is
also an issue.

12 CIFS

CIFS, the Common Internet File System, is
what was colloquially referred to as SMBfs
some time ago. Microsoft’s distributed file sys-
tem is session-based, and sticks closely to the
file system semantics of windows file systems.
Samba, and the Linux smbfs and cifs clients
have demonstrated that it is possible for Unix
platforms to interoperate with Windows ma-
chines using CIFS, but some things from the
POSIX world remain hard to map to their Win-
dows equivalents and vice versa, with Access
Control Lists (ACLs) being the most notorious
example.

CIFS provides some cache consistency through
the use of op-locks. It is a stateful protocol,
and crash recovery is usually the job of the
application (we’re probably all familiar with
Abort/Retry/Ignore dialog boxes).

While CIFS was originally designed purely
with Windows file system semantics in mind,
it provides a protocol extension mechanisms
which can be used to implement support for
some POSIX concepts that cannot be mapped
onto the CIFS model. This mechanism has
been used successfully by the Samba team to
provide better Linux to Linux operation over
CIFS.

The Linux 2.6 kernel comes with a new CIFS
implementation that is well along the way of re-
placing the old smbfs code. As of this writing,
the cifs client seems to have overcome most of
its initial stability issues, and while it is still
missing a few features, it looks very promising.

Without question, CIFS is the de-facto stan-
dard when it comes to interoperating with Win-

dows machines. However, CIFS could be se-
rious competition to NFS in the Linux world,
too—the biggest obstacle in this arena is not
a technical one, however, but the fact that it
is is controlled entirely by Microsoft, who like
to spring the occasional surprise or two on the
open source world.

13 Cluster Filesystems

Another important area of development in the
world of distributed file systems are clustered
file systems such as Lustre, GFS and OCFS2.
Especially the latter looks very interesting, as
its kernel component is relatively small and
seems to be well-designed.

Cluster file systems are currently no replace-
ment for file systems such as NFS or CIFS, be-
cause they usually require a lot more in terms of
infrastructure. Most of them do not scale very
well beyond a few hundred nodes either.

14 Future NFS trends

The previous sections have probably made it
abundantly clear that NFS is far from being
the perfect distributed file system. Still, in
the Linux-to-Linux networking world, it is cur-
rently the best we have, despite all its shortcom-
ings.

It will be interesting to see if it will continue to
play an important role in this area, or if it will
be pushed aside by other distributed file sys-
tems.

Without doubt, NFSv4 will see wide-spread
use in maybe a year from now. However, one
should remain sceptical on whether it will actu-
ally meet its original goal of providing interop-
erability with the Windows world. Not because



2006 Linux Symposium, Volume Two • 63

of any design shortcomings, but simply because
CIFS is doing this already, and seems to be do-
ing its job quite well. In the long term, it may
be interesting to see if CIFS can take some bites
out of the NFS pie. The samba developers cer-
tainly think so.

There is also the question whether there is
much incentive for end users to switch to
NFSv4. In the operational area, semantics have
not changed much; they mostly got more com-
plex. If users get any benefits from NFSv4,
it may not be from things like Windows in-
teroperability (which may turn out to be more
of a liability than a benefit). Instead, users
would probably benefit a lot more from other
new features of the protocol, such as support
for replication and migration. It is worth not-
ing, however, that while the NFSv4 RFC pro-
vides the hooks for informing clients about mi-
gration of a file system, it does not define the
migration mechanisms themselves. Unfortu-
nately, the RFC 3010 does not talk about prox-
ying, which would have been a real benefit.

The adoption of RPCSEC_GSS will definitely
be a major benefit in terms of security. While
GSS with Kerberos may not see wide deploy-
ment, simply because of the administrative
overhead of running a Kerberos service, other
GSS mechanisms such as LIPKEY may pro-
vide just the right trade-off between security
and ease of use that make them worthwhile to
small to medium sized networks.

Other interesting areas of NFS development in
Linux include the RPC transport switch, which
allows the RPC layer to use transports other
than UDP and TCP over IPv4. The primary
goals in this area are NFS over IPv6, and us-
ing Infiniband/RDMA as a transport.

15 So how bad is it really?

This article claims to answer the question why
NFS sucks. Hopefully, it has achieved this at
least partly; but the question that remains is,
how bad is it really, and how does NFSv4 help?

So indeed, a lot of the issues raised above are
problems in NFSv2 and NFSv3, and have been
addressed in NFSv4.

Still, several issues remain. The most promi-
nent is the absence of real cache consistency.
NFSv4 supports delegations, but these do not
solve the problem; instead they allow the client
to do more efficient caching if there are no con-
flicting accesses.

Another issue is NFSv4 ACLs, which are nei-
ther POSIX nor CIFS compatible, and there-
fore require either an elaborate and fragile map-
ping for Linux to take advantage of them, or a
continued use of the nfsacl side band protocol.
There is also no mechanism to enforce NFSv4
ACLs locally, or via NFSv3.

The third problem is the continued use of RPC.
In theory, it should be possible to perform call-
backs over an established TCP connection—
callbacks are just another type of message.
However, this is not the way RPC is modeled,
and thus the server needs to establish a connec-
tion to a service port on the client. This cre-
ates problems with firewalls, and makes for un-
happy security officers who would like to see as
few open ports on client machines as possible.

Without RPC, NFS could possibly also handle
the reply cache more efficiently and robustly. A
better session protocol would be able to detect
reliably whether a request is a retransmission;
whether a client has rebooted and it is hence
a good idea to discard all cached replies; and
to identify clients by means other than their IP
address and port number.



64 • Why NFS Sucks



Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


