
A Lockless Pagecache in Linux—Introduction,
Progress, Performance

Nick Piggin
SUSE Labs, Novell Inc.
npiggin@suse.de

Abstract

Critical Linux pagecache operations can be
made lockless to provide improvements in per-
formance and scalability. I examine some exist-
ing pagecache synchronisation designs, then in-
troduce my lockless pagecache for Linux. Per-
formance and scalability of the implementation
is analysed and compared with that of other
schemes—this involves a comparison of bench-
mark results from a range of machines and
workloads. Finally, I give a progress report on
the present state of the work.

1 Introduction

The focus of this paper is to improve the mul-
tiprocessor scalability of the Linux pagecache
without compromising other performance char-
acteristics.

1.1 Pagecache

The pagecache is a transparent filesystem
cache. The fundamental functionality required
of the pagecache is to manage memory pages
that hold inode1 data, and which are stored and
retrieved according to their (inode, offset) tuple.

1An inode essentially represents a file’s contents.

Many modern UNIX-like operating systems,
including Linux, have the concept of a page-
cache, which obsoleted the buffer cache when
it was introduced with SVR4 UNIX.

A common use-case for the pagecache is a
page-sized and aligned read(2) system call; the
Linux kernel performs the following opera-
tions:

1. System call entry into the VFS (kernel’s
filesystem subsystem).

2. VFS determines which inode is specified
by the given file descriptor.

3. VFS calls into the memory manager to
read the required (inode, offset).

4. The memory manager queries the page-
cache for the page. If the page does not
exist, go to 5; if the page not valid, go to
7; otherwise go to 8.

5. memory manager allocates a new page,
mark its contents invalid, and store this
new page in the pagecache, representing
the given (inode, offset).

6. memory manager initiates a filesystem
read to populate the page.

7. thread will now wait until completion of
the read (which marks the page contents
as valid).

242 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

8. memory manager will copy the required
data to the VFS for the read call.

1.2 Linux pagecache history

1.2.1 Linux 2.4: Globally locked pagecache

Linux 2.4 uses a fixed sized global hash-chain
data structure in order to store pagecache pages
based on their (inode, offset) tuple. Pagecache
pages are also present on per-inode lists of
clean and dirty pages. Access to these lists and
the hash table is synchronised by a single global
spinlock.

This global spinlock is one of the largest scal-
ability bottlenecks in the Linux 2.4 kernels
for many workloads. On a workload such as
dbench2 [8], Juergen Doelle [1] demonstrated
the poor scalability of this scheme, with al-
most no performance improvement when mov-
ing from 4 to 8 CPUs.

CPUs throughput
(normalised)

1 1.00
2 1.51
4 2.15
8 2.27

1.2.2 Linux 2.4: Molnar/Miller scalable
pagecache

Ingo Molnar and David Miller [4] attempted to
address the problem of the global pagecache
lock with a synchronisation scheme which pro-
tected the hash table with an individual lock
per hash-bucket, and protected per-inode lists
(which contain clean/dirty pages) with a per-
inode lock.

2dbench is a file server benchmark

This design is problematic because it intro-
duces another layer of locking to the system,
thus increasing the number of lock operations
and the cache footprint of a typical path through
the kernel. There is also complexity introduced
in order to avoid lock ordering deadlocks.

The Molnar/Miller pagecache was never used
in the Linux kernel, however it may have pro-
vided ideas which paved the way for the Ve-
likov/Hellwig design.

1.2.3 Linux 2.6: Velikov/Hellwig radix-tree
pagecache

Momchil Velikov and Christoph Hellwig de-
signed a radix-tree based pagecache architec-
ture, which is used by current Linux 2.6 ker-
nels. Pagecache pages are stored in a variable
height radix-tree, with one radix-tree per inode,
and each tree is indexed by the page’s offset
within the inode. The per-inode page lists were
retained for some time after its inclusion into
the kernel. Andrew Morton subsequently mod-
ified this design to remove these lists: the radix-
tree now maintains a hierarchy of ‘tags’ for
each node, one of which indicates dirty page-
cache, to speed up searches for dirty pages.

Each inode structure has a spinlock, tree_
lock, which is used to synchronise concurrent
access and modification of the radix-tree, and
to control access to the pagecache in general.

1.2.4 Other operating systems

OpenSolaris uses a complex arrangement of
hash tables and hashed locks in its pagecache
implementation, which is in some ways similar
to the Molnar/Miller scalable pagecache.

FreeBSD 6 uses a per-inode splay-tree and per-
inode locking in its pagecache, in the same ba-

2006 Linux Symposium, Volume Two • 243

sic way as the Velikov/Hellwig radix-tree page-
cache.

Most other free and open operating systems use
either hashes or trees with lock based synchro-
nisation, these are naturally suited to the appli-
cation.

1.3 Linux memory management

An introduction to the relevant details of the
Linux memory management implementation
needs to be given, to provide the reader with
background to understand the proposal for the
lockless pagecache. These details are slightly
simplified in places so as not to distract from
the main concepts being introduced. For fur-
ther reading, Mel Gorman [3] provides a thor-
ough examination of memory management in
Linux.

1.4 Memory, struct page

In Linux, every physical page frame that is to
be used as RAM by the kernel is represented
with a corresponding struct page struc-
ture. This structure contains fields flags for
general flags, _count is a reference count, and
various other data associated with the status and
management of the page frame.

The struct page is the usual way to re-
fer to a page, and the pagecache is no excep-
tion. It is the struct page representing a
given pagecache page that is stored in the page-
cache’s radix-tree.

Figure 1 gives an idea of how the struct
page relates to page-frames.3

3‘Two separate columns’ is slightly inaccurate be-
cause actually the mem_map array of struct page is
itself stored in physical memory frames, and it may not
be implemented as a single contiguous array, however
that is inconsequential to this discussion.

 page frame

 struct page

 physical memory

 mem_map array

Figure 1: How struct page relates to physical
memory pages

1.4.1 Page lifetimes, refcounting

struct page has a reference count,
_count, which is 0 when the page is free, and
is set to 1 when the page is allocated.

When some part of the kernel has finished with
a page and would like to free it, __free_
pages (shown in Figure 2) or a similar func-
tion would be called. This atomically decre-
ments the refcount and if that caused it to be-
come zero, the page is returned to the alloca-
tor. There is a get_page function, which in-
creases the refcount of an allocated page.

1: void __free_pages(struct page *page,
2: unsigned int order)
3: {
4: if (put_page_testzero(page)) {
5: if (order == 0)
6: free_hot_page(page);
7: else
8: __free_pages_ok(page, order);
9: }
10: }

Figure 2: __free_pages function in Linux

244 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

1.4.2 Dirty pages

A pagecache page is considered dirty if its con-
tents are more recent than the contents of the
filesystem which it is caching. A pagecache
page would become dirty if a program invokes
the write system call to modify the data in an
inode. If a pagecache page is not dirty then it
is considered clean—it is storing a copy of file
data that is identical to its corresponding data
in the filesystem.

A clean page can be discarded from the page-
cache, because if it is required in future it will
be restored from the filesystem. Dirty pages
can not be discarded from the pagecache be-
cause that would result in data loss as the con-
tents of the disk are older than those in mem-
ory. A dirty page can be cleaned by directing
the filesystem to write the contents of the page
to its backing store.

1.4.3 Page reclaim

During the course of a system’s operation, if
memory becomes full, it will attempt to reclaim
pagecache pages in order to satisfy requests for
memory.

Clean pagecache pages are reclaimed by sim-
ply discarding them. It is important to ensure
that the pages are clean and that they have no
references to them before being reclaimed. A
reference to the page indicates it is in use—that
user may be in the process of dirtying the page
even if it is now clean.

This detail becomes important later on, be-
cause Linux currently relies on the per-inode
tree_lock to exclude read-side code when
performing these tests.

2 Lockless pagecache in Linux

This section will propose a model for a lockless
pagecache in Linux. By lockless, it is meant
that pagecache lookup (read-side) operations
will be performed without taking a lock. Inser-
tion and removal of pages, and ‘tag lookups’
are still performed with the same locking—
these operations are usually associated with
less frequent operations such as IO, truncation,
and page reclaim so are less important.

2.1 Lockless data structure

One fundamental protection provided by the
tree_lock spinlock that is taken by page-
cache lookup functions, is the protection of the
pagecache data structure. Hence, one thing re-
quired for lockless pagecache is a lockless data
structure.

Simple lockless data structures such as linked
lists and hashes are already used in Linux.
Lockless hash lookups are used in places such
as the pid hash and dcache hash, however
changing to a hash table would be a step back
from the per-inode radix-tree structure in Linux
2.6.4 What’s more, fundamentally changing the
nature of pagecache data structure is beyond the
scope of this paper, which is to examine just
pagecache synchronisation designs.

A lockless radix-tree using RCU has been de-
veloped [7] to be used as the lockless data
structure. Lockless radix-tree lookups can re-
turn stale data, data that no longer exists in the
radix-tree. It is up to the callers to deal with
stale data.

4O(log(N)) vs O(N) lookup complexity is one reason.

2006 Linux Symposium, Volume Two • 245

2.2 Linux pagecache synchronisation in-
troduction

With the ability to retrieve pagecache pages
from the radix-tree without taking a lock, the
problem of synchronising the pagecache itself
still exists. In Linux, this pagecache synchroni-
sation is performed using the same lock that is
used for data structure synchronisation.

The following is a description of the page-
cache synchronisation functions performed by
tree_lock in Linux 2.6. When held for
reading, the inode’s tree_lock in Linux
2.6 is used to provide the following pagecache
synchronisation guarantees (by providing ex-
clusion from writers):

• the existence guarantee;

• the accuracy guarantee.

When held for writing, tree_lock addition-
ally provides a guarantee that no new refer-
ences to the page is given (by also providing
exclusion from readers):

• the no new reference guarantee.

2.2.1 Existence guarantee

Providing existence guarantees is
likely the most difficult aspect of con-
currency control. The traditional
way of eliminating races between one
thread trying to lock an object and
another deallocating it, is to ensure
that all references to an object are
protected by their own lock [2]

An existence guarantee provides the guarantee
that an object will continue to exist and be valid

for a given period, typically for the time that a
sequence of operations are performed on that
object.

Linux pagecache lookup functions require the
guaranteed existence of a struct page in
pagecache, from the time it is looked up via
the radix-tree, until its reference count can be
incremented.5 This guarantee is provided by
holding the tree_lock for reading.

A problem of existence
The notion of an existence guarantee can be
difficult to understand at first; with traditional
lock based synchronisation, existence is almost
always implied at a fundamental level. Exis-
tence is best explained by examining the con-
sequences of its absence.

1: struct page *find_get_page(struct address_space *mapping,
2: unsigned long offset)
3: {
4: struct page *page;
5:
6: read_lock_irq(&mapping->tree_lock);
7: page = radix_tree_lookup(&mapping->page_tree, offset);
8: if (page)
9: page_cache_get(page);
10: read_unlock_irq(&mapping->tree_lock);
11: return page;
12: }

Figure 3: find_get_page, a pagecache lookup
function in Linux

Figure 3 shows a commonly used pagecache
lookup function in Linux. At line 8, page_
cache_get elevates the reference count of
the struct page, which prevents the page
from being freed. However if the tree_lock
were not held during this operation, then after
executing line 6 and before executing line 8, an-
other CPU can concurrently remove the page
from the pagecache and free it. When the orig-
inal CPU does execute line 8, it would be in-
crementing the reference count of a struct
page which has been freed and possibly allo-
cated for some other use.

5The elevated refcount then guarantees existence.

246 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

2.2.2 Accuracy guarantee

After looking up a page in the pagecache radix-
tree, the tree_lock held for reading pro-
vides the guarantee that the page will remain
in the pagecache until the lock is released.

The accuracy guarantee is subtly different from
the existence guarantee. The existence guaran-
tee only provides that the page remains allo-
cated, it may still be removed from the page-
cache should its inode be truncated.

2.2.3 No new reference guarantee

The no new reference guarantee ensures that no
pagecache lookup routines will be allowed to
take a new reference to a particular page. This
guarantee is provided by holding tree_lock
for writing, thereby excluding those lookup
functions, which all take the lock for reading.

This guarantee is important for page reclaim
(and page migration). To reclaim a page, the
memory manager needs to ensure nobody can
take a new reference to the page before remov-
ing it from pagecache (see 1.4.3).

2.3 Providing guarantees without locking

Here, the fundamental concepts of the lock-
less pagecache synchronisation design are ex-
plained. That is, the methods that allow the
removal of the per-inode tree_lock from
some places where it is currently taken for
reading. In order to show that correctness is
maintained, it must be demonstrated that page-
cache synchronisation requirements, described
above in 2.2, can be provided by the lockless
design.

2.3.1 Permanence of struct page (exis-
tence guarantee)

Taking a reference on a pagecache struct
page without holding any locks relies on a key
observation which alleviates the requirement of
a strict existence guarantee. This is a central
idea behind lockless pagecache: a struct
page itself is never actually allocated or freed,
only its associated page frame is. This is made
clear when considering that free page frames
retain their associated struct page, it is
even used by the page allocator to manage the
free page frame.6

2.3.2 Speculative pagecache references (ac-
curacy guarantee)

With the necessity for an existence guarantee
alleviated, it is possible to ‘speculatively’ el-
evate the struct page’s reference count,
then verify that the operation was performed
on the correct page. If the page is no longer
at the same position in the pagecache after the
speculative reference, then it must have been
replaced or deleted, so the speculative reference
is dropped, and the whole operation retried.

There is an interesting corner case to consider,
because it may not be obviously correct imme-
diately. Suppose a particular pagecache page is
removed from the pagecache and freed, but is
then re-allocated and used as a pagecache page
for exactly the same (inode, offset) as it has
been previously. Now suppose that the specula-
tive reference loads the address of the struct
page when it is in the pagecache the first time
around, but the reference count is actually in-
cremented after the page has been freed and re-
allocated. The check to see whether the page
is still at the right place in the pagecache then

6One way the page allocator uses the struct
page is to keep track of the page on ‘free lists.’

2006 Linux Symposium, Volume Two • 247

finds that to indeed be the case, despite the page
having been freed and reallocated.

This case turns out to be no problem, because it
is equally possible that the initial address load
had been slightly delayed and found the page
after it had been reused. The important thing is
just that the struct page that actually had
its refcount increased is verified to be correct.

In one pagecache lookup function, find_
lock_page, the accuracy requirement goes
beyond increasing the refcount when the page
is known to be in the pagecache. This is ad-
dressed in subsection 2.5.

2.3.3 Lookup synchronisation point (no
new reference guarantee)

The ‘no new reference’ guarantee traditionally
provided by holding the tree_lock for writ-
ing is no longer enforced due to the lookup side
taking references without holding the lock for
reading. This problem is overcome by intro-
ducing a new bit in the page’s flags field.
Code that requires the no new reference guar-
antee will set this bit. After a speculative refer-
ence is taken on a page, this bit will be checked
and the operation retried if it was set.

Essentially the bit has become a synchronisa-
tion point and has taken over from the func-
tionality provided by tree_lock. Impor-
tantly, it is not a lock that is taken by the
read-side: it does not block writers, nor will
it cause cacheline contention between multiple
read-side lookups of the same page.

2.3.4 Guarantees in uniprocessor kernels

The Linux kernel offers a compilation config-
uration choice between uniprocessor (UP) or
multiprocessor (SMP) kernels. The UP kernel

option allows many optimisations in the result-
ing compiled code, in particular, spinlocks get
optimised away because there is no need to pre-
vent other processors from entering the critical
section. It is important to note that it is still
important to disable interrupts when providing
critical sections with exclusion from interrupts.

A UP kernel already effectively has lockless
pagecache lookup operations. The relatively
complex mechanisms for providing pagecache
synchronisation, described above, are not re-
quired for UP kernels. They are not required
because all pagecache write-side operations are
performed in process context and exclude inter-
rupts while running. Read-side operations need
only ensure that they are not interleaved with
any other process context, which can be done
so by having preemption disabled. Thus a spe-
cial case can be made for UP kernels, which
results in a lighter-weight lookup function.

2.3.5 Problems

There are subtle problems with this simplistic
description of the mechanics of taking a spec-
ulative reference when relying on the perma-
nence property of the struct page. They
stem from the fact that the existence guarantee
provided is not as strong as it could be. In par-
ticular, while the struct page itself does
not get deallocated, it can be used in completely
different ways depending on whether the page
is allocated, and what part of the kernel has al-
located the page.

Between the act of looking up the page and
speculatively taking a reference on the page,
it may have been removed from the page-
cache, then freed, then allocated somewhere
else. When taking the speculative reference, it
is possible for the page to be in any state. The
page may be free or re-allocated, perhaps for an
entirely different purpose than pagecache.

248 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

Speculative references to free pages
One issue is free pages. Free pages have a re-
fcount of zero and exist in the page allocator.
Speculatively elevating the refcount of a free
page poses a number of problems.

It can be difficult to tell if the page actually was
free at that point (imagine a second speculative
reference that had elevated the count from 0 to
1). When dropping the speculative reference it
is essential that a free page is not freed again,
when the count reaches zero.

Another problem is the possibility that the page
might be allocated while a speculative refer-
ence has elevated the count, further complicat-
ing the task of determining the correct course
of action to take when dropping a failed specu-
lative reference.

All the problems associated with free pages are
avoided by introducing the new atomic primi-
tive atomic_inc_not_zero, to be used when
taking speculative references. atomic_inc_

not_zero increments the reference count only
when it is not zero, and returns success or fail-
ure. This allows free pages to be detected and
ignored.

Page refcounting uniformity
A second problem is one of ‘page refcount-
ing uniformity’ throughout the kernel. By the
time a speculative reference has been taken on
a page, it may have been freed then allocated
somewhere else (in which case atomic_inc_
not_zero will succeed). This speculative ref-
erence must be dropped when it is discovered
that the wrong page has been picked up. For
this reason, it is important that the entire kernel
treats the page’s refcount in the same manner,
and that dropping the last reference must free
the page.

Page refcount instability
There is a third problem, introduced by the fact
that any page taken from the allocator may have

an unstable refcount. Before being allocated,
the page may previously have been a page-
cache page, and may have a speculative refer-
ence taken on it at any time.

To solve this problem, no part of the kernel
should assume the refcount is stable, nor should
non-atomic operations be used to manipulate
the refcount. It can still be assumed that the ref-
count is be greater than or equal to the number
of references that are known to be held at any
point.

The lookup synchronisation point used to pro-
vide the ‘no new reference’ guarantee can be
used, when necessary, to determine that the
number of real references to a page is less than
or equal to the refcount in the struct page.

2.3.6 Why RCU is not used for struct
page existence guarantee

RCU is not used to provide existence guaran-
tees for a pagecache page. While this would be
possible, and would avoid many of the page ref-
erence counting problems encountered by rely-
ing on the permanence of struct page for
existence, RCU has problems of its own.

RCU freeing would add an extra stage for pages
to pass through before actually being freed.
This stage would involve batching up pages
into a list, and traversing the list again (after
an RCU grace period) in order to actually free
them. This scheme would have a number of
problems:

• Visiting the page again will introduce
overhead;

• within the grace period delay, the struct
page could have been evicted from the
CPU’s, introducing cache misses when
freeing the pages;

2006 Linux Symposium, Volume Two • 249

• the page allocator has per-CPU lists of
free pages, which can be accessed lock-
lessly. Page allocator locks need only
be taken when these lists overflow or un-
derflow. The extra RCU stage will keep
pages from reaching these per-CPU lists
for some time. This will increase the in-
cidence of underflow while the pages are
being held, and of overflow when they are
finally freed.

• the per-CPU lists attempt to keep track of
pages which are likely to be cache-hot and
those which are cache-cold, so they may
be used appropriately. The extra RCU
stage will reduce the effectiveness of these
estimations.

• RCU can take some time to go through
a quiescent state, this could be a problem
in low memory conditions if pages aren’t
freed quickly enough.

Lockless pagecache does use RCU for the
pagecache radix-tree nodes, however they are
less affected by the above problems: they are
much smaller than a page, and they are usually
allocated and freed less often than pagecache
pages.

2.3.7 page_cache_get_speculative

This subsection briefly introduces page_

cache_get_speculative, which is is the
core operation that implements pagecache syn-
chronisation, according to the methods de-
scribed above. Figure 4 is the actual C code for
page_cache_get_speculative, with the
simple uniprocessor implementation and some
comments removed for clarity.

In lines 6-8, a pointer to the radix-tree’s leaf-
node slot is dereferenced, the function returns

1: struct page *page_cache_get_speculative(struct page **pagep)
2: {
3: struct page *page;
4:
5: again:
6: page = rcu_dereference(*pagep);
7: if (unlikely(!page))
8: return NULL;
9:
10: if (unlikely(!get_page_unless_zero(page)))
11: goto again; /* page has been freed */
12:
13: while (unlikely(PageNoNewRefs(page)))
14: cpu_relax();
15:
16: smp_rmb();
17:
18: if (unlikely(page != *pagep)) {
19: /* page no longer at *pagep */
20: put_page(page);
21: goto again;
22: }
23:
24: return page;
25: }

Figure 4: page_cache_get_speculative
function

NULL if the slot is empty, otherwise the slot
contains a pointer to a struct page.

At line 10, the page’s refcount is incremented if
it was not previously 0; if it was, the operation
is restarted.7

Line 13 busy-waits while the page’s
‘NoNewRefs’ flag is set.8

When NoNewRefs is clear, lines 18–22 recheck
that this page is present in pagecache.9 If yes,
then success and the page is returned; if no,
the page’s refcount is decremented (and will be
freed if that caused it to reach 0), and the oper-
ation is restarted.

Note: page_cache_get_speculative re-
lies on memory barriers to order memory op-
erations correctly. Discussion of these barriers
at this point would distract from the fundamen-
tal details of the operation, and as such will not
be covered. The comments in the actual imple-
mentation explain all memory ordering in de-
tail.

7this relies on the permanence of struct page
and uniform page refcounting.

8The ‘NoNewRefs’ flag can be set to enforce the no
new references guarantee.

9This recheck provides the accuracy guarantee.

250 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

2.4 Lockless pagecache operations

This section describes the re-implementation
of Linux pagecache lookup functions, using
the lockless radix-tree and the ‘speculative get
page’ operation, without using locks.

2.4.1 find_get_page

find_get_page has the following seman-
tics, if the given pagecache coordinates (map-
ping,10 offset):

• always contained the page, it must be re-
turned;

• were always empty, NULL must be re-
turned;

• ever contained a page, it may be returned;

• were ever empty, NULL may be returned.

If a page is to be returned, first its refcount
is incremented while it is in the pagecache.
find_get_pagemay return pages which are
no longer in the pagecache, so there is no prob-
lem with the lockless radix-tree lookup return-
ing stale data.

When a page has been found, page_cache_
get_speculative can be used to increment
its refcount and ensures the refcount was incre-
mented while the page was in the pagecache.
Figure 3 shows the locking version of the func-
tion, figure 5 is the lockless implementation.

2.5 find_lock_page

find_lock_page is similar to find_get_
page, however it is also required to lock the
page11 while it is in pagecache.

10mapping basically represents an inode
11A page is locked by waiting for a ‘lock’ bit in its

flags attribute to become clear, then setting it.

1: struct page *find_get_page(struct address_space *mapping,
2: unsigned long offset)
3: {
4: struct page **pagep;
5: struct page *page = NULL;
6:
7: rcu_read_lock();
8: pagep = radix_tree_lookup_slot(&mapping->page_tree,
9: offset);
10: if (pagep)
11: page = page_cache_get_speculative(pagep);
12: rcu_read_unlock();
13: return page;
14: }

Figure 5: Lockless find_get_page

The page lock actually pins a page in page-
cache, unlike the refcount. This means that af-
ter taking the page lock, it is sufficient to sub-
sequently recheck that the page indeed exists
in the expected position in pagecache. In or-
der to take the page lock, the page must be
prevented from being freed concurrently. This
existence guarantee is provided by first incre-
menting the page’s refcount by calling the lock-
less find_get_page.

2.5.1 find_get_pages

The find_get_pages function finds up to a
specified number of pages from a given offset
in an inode, and elevates the refcount of each
page found. The operation is performed com-
pletely under the tree_lock, which means
that all returned pages were all in pagecache at
the time each had their refcount incremented.

It is not possible to retain this atomicity with-
out holding tree_lock. Instead of being
replaced, a new function, find_get_pages_
nonatomic, is introduced which provides only
find_get_page semantics on a per page ba-
sis.

Truncation and invalidation
Truncation and invalidation are the main oper-
ations which use find_get_pages (in the
form of pagevec_lookup). They are typi-
cally invoked on a range of pages in an inode,

2006 Linux Symposium, Volume Two • 251

and pagevec_lookup is used to find these
pages.

The truncate and invalidate operations them-
selves only operate on a single page at a time,
so it is possible to use the lockless find_get_
pages_nonatomic as their pagecache lookup
function.

2.6 Lockless pagecache summary

This section described a design for lockless
pagecache lookup operations in Linux, us-
ing a lockless RCU radix-tree for the page-
cache data structure, and the page_cache_

get_speculative operation to provide the
required synchronisation without using a lock.

3 Performance results

In this section, the performance properties of
the lockless pagecache will be analysed, and
compared with the standard Linux 2.6 tree_
lock based pagecache synchronisation.

3.1 Benchmarking methodology

The benchmarks presented here aim to give a
fair representation of the basic performance and
scalability behaviour of the lockless pagecache.

Benchmarks are run on several architectures
where possible. It is important to show per-
formance behaviour on a diverse range of
hardware because low level details, especially
memory coherency and consistency, atomic op-
erations, can vary.

Benchmarks are run on uniprocessor and mul-
tiprocessor (UP, SMP, respectively) compiled
kernels if relevant. UP compiled kernels can

be optimised due to the fact that only a single
processor will be running at once, so locking,
atomic operations and memory consistency op-
erations can differ significantly.

All benchmarks were run 10 times, and the er-
ror bars represent a 99.9% confidence interval.

3.1.1 Kernels tested

The base kernel tested was 2.6.16. The ‘stan-
dard’ kernel includes a number of preparatory
patches [6] (which are now included in later
kernels), because they might have an impact
on performance. The ‘lockless’ kernel includes
all preparatory patches, as well as the lockless
pagecache patches [5].

3.2 find_get_page kernel level bench-
marks

Benchmark machines
G5 - Apple G5 PowerMac. 2 CPUs (PPC970,
2.5GHz, 1MB L2). 4GB RAM.
P4 - Intel Pentium 4. 2 CPUs (Nocona Xeon,
3.4GHz, 1MB L2, HyperThreading). 4GB
RAM.

find_get_page is a fundamental page-
cache lookup function in Linux, which is made
lockless with the lockless pagecache. The fol-
lowing tests were performed by timing loops
which ran in kernel mode for the duration of the
test (plus a single system call—fadvise—
used to initiate the test). All find_get_
page tests are performed on just a single file.

3.2.1 find_get_page single threaded
benchmarks

Single threaded performance on SMP compiled
kernels was tested from by looking up a sin-

252 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

gle page 1,000,000 times (Figure 8), and by
looking up each page of a cached 1GB file in
turn (Figure 9). In the former test, the work-
ing set should completely fit in the cache of all
CPUs; in the latter case, each struct page
being operated upon will not be in CPU cache.
Uniprocessor (UP) kernels are also tested in
single threaded benchmarks. Figures 6 and 7
show the results of the same two tests on UP
kernels.

3.2.2 find_get_page multi threaded
benchmarks

Multi threaded performance was tested by
having two CPUs running find_get_page
1,000,000 times concurrently, first on the same
page (Figure 11), then on different pages of the
same file (Figure 10).

These microbenchmarks show that small sys-
tem performance of various architectures and
configurations has not suffered as a result of
the lockless pagecache implementation; in fact,
usually the opposite.

3.3 IO and reclaim benchmark

Page reclaim is an important operation for the
kernel, as it is part of almost any workload
that is filesystem IO intensive, and where the
working set does not fit completely into RAM.
Some examples may include desktop systems,
web and file servers, compile/build servers, and
some databases.

It is important to benchmark low level perfor-
mance of page reclaim and IO together, be-
cause the lockless pagecache implementation
changes both.

Figure 12 shows the results of reading 16GB
per thread from a large file. The system only

has 2GB of memory available for pagecache,
so most of the pagecache must be reclaimed in
the course of the test. In the single threaded
case, kswapd, the asynchronous reclaim dae-
mon, was restricted to the same CPU as the
reading thread. The file is sparse, so reading
from it is not limited by the speed of the sys-
tem’s block devices.

This benchmark together with the
find_get_page one demonstrate that
single threaded performance has not suffered,
and even been improved, with the lockless
pagecache.

 0

 10

 20

 30

 40

 50

2 thread1 thread

se
co

nd
s

pe
r

ite
ra

tio
n

2GB RAM available, threads reading 16GB from the same sparse file

standard
lockless

Figure 12: IO and page reclaim, SMP kernel, two
threads

3.4 Pagefault benchmark

Pagefaults of memory mapped files are one
of the most basic of operations initiated from
userspace, that require a pagecache lookup.
The following benchmark involves a number of
processes mapping 256MB chunks of the same
file (which is resident in pagecache), and touch-
ing each page (causing a pagefault), then un-
mapping the chunk; this sequence is repeated
64 times. The total throughput (amount of
pages faulted per second) is measured by the
time taken for all threads to complete

This benchmark was run on a dual core AMD
Opteron system, with 8GB RAM and 16 cores
(8 sockets), Figure 13 illustrates the results.

2006 Linux Symposium, Volume Two • 253

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

T
ot

al
 th

ro
ug

hp
ut

 (
M

B
/s

)

Processes / CPUs used

Multi-process page faults from a single (in memory) file

standard
lockless

Figure 13: Pagefault scalability

The pagefault benchmark gives an idea of the
potential scalability improvement provided by
the lockless pagecache.

3.5 Data structure size

The lockless pagecache imposes a small impact
on the size of the radix-tree node data structure
as a result of using RCU for delayed dealloca-
tion. The impact is roughly a 5% increase in the
size of the node. This is undesirable, however a
radix-tree node itself takes much less than 1%
of the memory it can store in pagecache pages,
so the small size increase is not a major prob-
lem.

4 Conclusion

The lockless pagecache design has good poten-
tial. The design is not overly complex, and
the implementation has so far proven to be
robust. Initial benchmarks have shown that
performance is improved in many areas, and
the improvement in scalability of basic opera-
tions is significant. Further investigation of per-
formance in ‘real-world’ benchmarks is war-
ranted.

References

[1] Juergen Doelle. Re: [patch] align vm
locks, new spinlock patch. [Viewed
December 29, 2005], September 2001.

[2] Ben Gamsa, Orran Krieger, Jonathan
Appavoo, and Michael Stumm. Tornado:
Maximizing locality and concurrency in a
shared memory multiprocessor operating
system. In Proceedings of the 3rd

Symposium on Operating System Design
and Implementation, pages 87–100, New
Orleans, LA, February 1999. Preprint
Available: http://www.research.
ibm.com/K42/osdi-preprint.ps
[Viewed Dec 29, 2005].

[3] Mel Gorman. Understanding the Linux
Virtual Memory Manager. 2004.

[4] Ingo Mollnar and David Miller. Scalable
pagecache, February 2002. [Viewed
December 29, 2005].

[5] Nick Piggin. Lockless pagecache patches
for Linux 2.6.16.
http://www.kernel.org/pub/
linux/kernel/people/npiggin/
patches/lockless/2.6.16/2.6.
16-lockless.gz.

[6] Nick Piggin. Preparatory patches for
Linux 2.6.16. http://www.kernel.
org/pub/linux/kernel/people/
npiggin/patches/lockless/2.
6.16/2.6.16-prep.gz.

[7] Nick Piggin. Rcu radix-tree. Draft chapter
available http://www.kernel.org/
pub/linux/kernel/people/
npiggin/patches/lockless/2.
6.16-rc5/radix-intro.pdf.

[8] Andrew Tridgell. dbench. http://
samba.org/ftp/tridge/dbench/.

254 • A Lockless Pagecache in Linux—Introduction, Progress, Performance

 0

 10

 20

 30

 40

 50

 60

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

1 000 000 find_get_page on the same page

standard
lockless

Figure 6: find_get_page UP
kernel, cache hot

 0

 20

 40

 60

 80

 100

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

find_get_page on 1GB of pagecache pages, sequentially

standard
lockless

Figure 7: find_get_page UP
kernel, cache cold

 0

 20

 40

 60

 80

 100

 120

 140

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

1 000 000 find_get_page on the same page

standard
lockless

Figure 8: find_get_page SMP
kernel, cache hot

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

find_get_page on 1GB of pagecache pages, sequentially

standard
lockless

Figure 9: find_get_page SMP
kernel, cache cold

 0

 50

 100

 150

 200

 250

 300

 350

 400

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

2 CPUs, 1 000 000 find_get_page on different page

standard
lockless

Figure 10: find_get_page
SMP kernel, two threads, different
pages

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

PowerMac G5Pentium 4

na
no

se
co

nd
s

pe
r

ite
ra

tio
n

2 CPUs, 1 000 000 find_get_page on same page

standard
lockless

Figure 11: find_get_page
SMP kernel, two threads, same page

Proceedings of the
Linux Symposium

Volume Two

July 19th–22nd, 2006
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc.
C. Craig Ross, Linux Symposium

Review Committee

Jeff Garzik, Red Hat Software
Gerrit Huizenga, IBM
Dave Jones, Red Hat Software
Ben LaHaise, Intel Corporation
Matt Mackall, Selenic Consulting
Patrick Mochel, Intel Corporation
C. Craig Ross, Linux Symposium
Andrew Hutton, Steamballoon, Inc.

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
David M. Fellows, Fellows and Carr, Inc.
Kyle McMartin

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

