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Abstract

Application mobility has been an operating sys-
tem research topic for many years. Many
approaches have been tried and solutions are
found across the industry. However, perfor-
mance remains the main issue and all the ef-
forts are now focused on performant solutions.
In this paper, we will discuss a prototype which
minimizes the overhead at runtime and the
amount of application state. We will examine
constraints and requirements to enhance perfor-
mance. Finally, we will discuss features and en-
hancements in the Linux kernel needed to im-
plement migration of applications.

1 Introduction and Motivation

Applications increasingly run for longer peri-
ods of time and build more context over time as
well. Recovering that context can be time con-
suming, depending on the application, and usu-
ally requires that the application be re-run from
the beginning to reconstruct its context. A few
applications now provide the ability to check-
point their data or context to a file, enabling that
application to be restarted later in the case of

a failure, a system upgrade, or a need to rede-
ploy hardware resources. This ability to check-
point context is most common in what is re-
ferred to as the High Performance Computing
(HPC) environment, which is often composed
of large numbers of computers working on a
distributed, long running computation. The ap-
plications often run for days or weeks at a time,
some even as long as a year.

Even outside the HPC arena, there are many
applications which have long start up times,
long periods of processing configuration files,
pre-computing information and so on. Histor-
ically, emacs was built with a script which in-
cluded undump—the ability to checkpoint the
full state of emacs into a binary which could
then be started much more quickly. Some enter-
prise class applications have thirty minute start
up times, and those applications continue to
build complex context as they continue to run.

Increasingly we as users tend to expect that our
applications will perform quickly, start quickly,
re-start quickly on a failure, and be always
available. However, we also expect to be able
to upgrade our operating system, apply secu-
rity fixes, add components, memory, some-
times even processing power without losing all
of the context that our applications have ac-
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quired.

This paper discusses a generic mechanism for
saving the state of an application at any point,
with the ability to later restart that applica-
tion exactly where it left off. This ability to
save status and restart an application is typi-
cally referred to as checkpoint/restart, abbre-
viated throughout as CPR. This paper focuses
on the key areas for allowing applications to
be virtualized, simplifying the ability to check-
point and later restart an application. Further,
the technologies covered here would allow ap-
plications to potentially be restarted on a differ-
ent operating system image than the one from
which it was checkpointed. This provides the
ability to move an application (or even a set of
applications) dynamically from one machine or
virtual operating system image to another.

Once the fundamental mechanisms are in
place, this technology can be used for such
more advanced capabilities such as check-
pointing a cluster wide application—in other
words synchronizing and stopping a coordi-
nated, distributed applications, and restarting
them. Cluster wide CPR would allow a site
administrator to install a security update or
perform scheduled maintainance on the entire
cluster without impacting the application run-
ning.

Also, CPR would enable applications to be
moved from host to host depending on sys-
tem load. For instance, an overloaded machine
could have its workload rebalanced by moving
an application set from one machine to another
that is otherwise underutilized. Or, several sys-
tems which are underloaded could have their
applications consolidated to a single machine.
CPR plus migration will henceforth be referred
to as CPRM.

Most of the capabilities we’ve highlighted here
are best enabled via application virtualization.

Application virtualization is a means of ab-
stracting, or virtualizing, the software resources
of the system. These include such things as pro-
cess id’s, IPC ids, network connections, mem-
ory mappings, etc. It is also a means to contain
and isolate resources required by the applica-
tion to enable its mobility. Compared to the
virtual machine approach, application virtual-
ization approach minimizes the state of the ap-
plication to be transferred and also allows for a
higher degree of resource sharing between ap-
plications. On the other hand, it has limited
fault containment, when compared to the vir-
tual machine approach.

We built a prototype, called MCR, by modify-
ing the Linux kernel and creating such a layer
of containment. They are various other projects
with similar goals, for instance VServer [8]
and OpenVZ [7] and dated Linux implementa-
tion of BSD Jails [4]. In this paper, we will
describe our experiences from implementing
MCR and examine the many communalities of
these projects.

2 Related Work in CPR

CPR is theoretically simple. Stop execution
of the task and store the state of all mem-
ory, registers, and other resources. To restart,
reload the executable image, load the state
saved during the checkpoint, and restart exe-
cution at the location indicated by the instruc-
tion pointer register. In practice, complications
arise due to issues like inter-processes sharing,
security implications, and the ways that the ker-
nel transparently manages resources. This sec-
tion groups some of the existing solutions and
reviews their shortcomings.

Virtual machines control the entire system
state, making CPR easy to implement. The
state of all memory and resources can simply be
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stored into a file, and recreated by the machine
emulator or the operating system itself. In-
deed, the two most commonly mentioned VMs,
VMware [9] and Xen [10], both enable live mi-
gration of their guest operating systems. The
drawbacks of CPRM of an entire virtual ma-
chine is the increased overhead of dealing with
all resources defining the VM. This can make
the approach unsuitable for load balancing ap-
plications, since a requirement to add the over-
head of a full VM and associated daemons to
each migrateable application can have tremen-
dous performance implications. This issue is
further explored in Section 6.

A more lighter weight CPRM approach can
be achieved by isolating applications, which
is predicated on the safe and proper isolation
and migration of its underlying resources. In
general, we look at these isolated and migrate-
able units as containers around the relevant pro-
cesses and resources. We distinguish conceptu-
ally system containers, such as VServer [8] or
OpenVZ [7], and application containers, such
as Zap [12] and our own prototype MCR. Since
containers share a single OS instance, many re-
sources provided by the OS must be specially
isolated. These issues are discussed in detail
in Section 5. Common to both container ap-
proaches is their requirement to be able to CPR
an isolated set of individual resources.

For many applications CPR can be completely
achieved from user space. An example imple-
mentation is ckpt [5]. Ckpt teaches applica-
tions to checkpoint themselves in response to
a signal by either preloading a library, or in-
jecting code after application startup. The new
code, when triggered, writes out a new exe-
cutable file. This executable reloads the appli-
cation and resets its state before continuing exe-
cution where it left off. Since this method is im-
plemented with no help from the kernel, there
is state which cannot easily be stored, such as
pending signals, or recreated, such as a pro-

cess’ original process id. This method is also
potentially very inefficient as described in Sec-
tion 5.2. The user space approaches also fall
short by requiring applications to be rewritten
and by exhibiting poor resource sharing.

CPR becomes much easier given some help
from the kernel. Kernel-based CPR solutions
include zap [12], crak [2], and our MCR pro-
totype. We will be analyzing MCR in detail in
Section 4, followed by the requirements for a
consolidated application virtualization and mi-
gration kernel approach.

3 Concepts and principles

A user application is a set of resources—tasks,
files, memory, IPC objects, etc.—that are ag-
gregated to provide some features. The general
concept behind CPR is to freeze the application
and save all its state (in both kernel and user
spaces) so that it can be resumed later, possibly
on another host. Doing this transparently with-
out any modification to the application code is
quite an easy task, as long as you maintain a
single strong requirement: consistency.

3.1 Consistency

The kernel ensures consistency for each re-
source’s internal state and also provides system
identifiers to user space to manipulate these re-
sources. These identifiers are part of the ap-
plication state, and as such are critical to the
application’s correct behavior. For example, a
process waiting for a child will use the known
process id of that child. If you were to re-
sume a checkpointed application, you would
recreate the child’s pid to ensure that the par-
ent would wait on the correct process. Unfortu-
nately, Linux does not provide such control on
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how pids, or many other system identifiers, are
associated with resources.

An interesting approach to this problem is vir-
tualization: a resource can be associated with a
supplementary virtual system identifier for user
space. The kernel can maintain associations
between virtual and system identifiers and of-
fer interfaces to control the way virtual iden-
tifiers are assigned. This makes it possible to
change the underlying resource and its system
identifier without changing the virtual identi-
fier known by the application. A direct side ef-
fect is that such virtualized applications can be
confused by virtual identifier collisions if they
are not separated from one another. These con-
flicts can be avoided if the virtualization is im-
plemented with resource containment features.
For example, /proc should only export virtual
pid entries for processes in the same virtualized
container as the reading process.

3.2 Process subsystem

Processes are the essential resources. They of-
fer many features and are involved in many re-
lationships, such as parent, thread group, and
process group. The pid is involved in many
system calls and regular UNIX features such
as session management and shell job control.
Correct virtualization must address the whole
picture to preserve existing semantics. For ex-
ample, if we want to run multiple applications
in different containers from the same login ses-
sion, we will also want to keep the same system
session identifier for the ancestor of the con-
tainer so as to still benefit from the regular ses-
sion cleanup mechanism. The consequence is
that we need a system pid to be virtualized mul-
tiple times in different containers. This means
that any kernel code dealing with pids that are
copied to/from user space must be patched to
provide containment and choose the correct vir-

tualization space according to the implied con-
text.

3.3 Filesystem and Devices

A filesystem may be divided into two parts. On
one hand, global entries that are visible from all
containers like /usr. On the other hand, lo-
cal entries that may be specific to the contain-
ers like /tmp and of course /proc. /proc
virtualization for numerical process entries is
quite straightforward: simply generate a file-
name out of the virtual pid. Tagging the re-
sultant dentries with a container id makes
it possible to support conflicting names in the
directory name cache and to filter out unrelated
entries during readdir().

The same tagging mechanism can be applied
using files attributes for instance. Some user
level administration commands can be used by
the system administrator to keep track of files
created by the containers. Devices files can be
tagged to be visible and usable by dedicated
containers. And of course, the mknod system
call should fail on containers or be restricted to
a minimal usage.

3.4 Network

If the application is network oriented, the mi-
gration is more complex because resources are
seen from outside the container, such as IP ad-
dresses, communication ports, and all the un-
derlying data related to the TCP protocol. Mi-
gration needs to take all these resources into ac-
count, including in-flight messages.

The IP address assigned to a source host should
be recreated on the target host during the mi-
gration. This mobile IP is the foundation of the
migration, but adds a constraint on the network.
We will need to stay on the same network.
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The migration of an application will be possible
only if the communication channels are clearly
isolated. The connections and the data associ-
ated with each application should be identified.
To ensure such a containment, we need to iso-
late the network interfaces.

We will need to freeze the TCP layer before
the checkpoint, to make sure the state of the
peers is consistent with the snapshot. To do
this, we will block network traffic for both in-
coming and outgoing packets. The application
will be migrated immediately after the check-
point and all the network resources related to
the container will be cleaned up.

4 Design Overview

We have designed and implemented MCR,
a lightweight application oriented container
which supports mobility. It is discussed here
because it is one of a few implementations
which are relatively complete. It provides an
excellent view on what issues and complexities
arise. However, from our prototype work, we
have concluded that certain functionality im-
plemented in user space in MCR is best sup-
ported by the kernel itself.

An important idea behind the design of MCR
is that it is kernel-friendly and does not do ev-
erything in kernel space. A balance needed to
be struck between striving towards a minimal
kernel impact to facilitate proper forward ports
and ensuring that functional correctness and ac-
ceptable performance is achieved. This means
using available kernel features and mechanisms
where possible and not violating important
principles which ensure that user space appli-
cations work properly.

With that principle in mind, CPR from user
space makes your life much easier. It also en-

ables some nifty and useful extensions like dis-
tributed CPR and system management.

4.1 Architecture

The following section provides an overview of
the MCR architecture (Figure 1). It relies on a
set of user level utilities which control the con-
tainer: creation, checkpoint, restart, etc. New
features in the kernel and a kernel module are
required today to enable the container and the
CPR features.

Process 1

Process 2

Process n

User Space

Kernel Space

MCRK (Kernel Module)

container 1

MCR (command line)

syscall

MCR Kernel APIs

/dev/mcr

MCRP (plugin)

Figure 1: MCR architecture

The CPR of the container is not handled by
one component. It is distributed across the 3
components of MCR depending on the local-
ity of the resourse to checkpoint. The user
level utility mcr (Section 4.1.2) invokes and
orchestrates the overall checkpoint of a con-
tainer. It also is in charge of checkpointing the
resources which are global to a container, like
SYSV shared memory for instance. The user
level plugin mcrp (Section 4.1.4) checkpoints
the resources at the process level, memory, and
at the thread level, signals and cpu state. Both
rely on the kernel module mcrk (Section 4.1.3)
to access kernel internals.
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4.1.1 Kernel enhancements and API

Despite a user space-oriented approach, the
kernel still requires modifications in order to
support CPR. But, surprisingly, it may no be
as much as one might expect. There are three
high level needs:

The biggest challenge is to build a container for
the application. The aim here is neither security
nor resource containment, but making sure that
the snapshot taken at checkpoint time is consis-
tent. To that end we need a container much like
the VServer[8] context. This will isolate and
identify all kernel resources and objects used
by an application. This kernel feature is not
only a key requirement to application mobil-
ity, but also for other frameworks in the secu-
rity and resource management domains. The
container will also virtualize system identifiers
to make sure that the resources used by the ap-
plication do not overlap with other containers.
This includes resources such as processes IDs,
threads IDs, SysV IPC IDs, UTS names, and IP
addresses, among others.

The second need regards freezing a con-
tainer. Today, we use the SIGSTOP signal to
freeze all running tasks. This gives valid re-
sults, but for upstream kernel development we
would prefer to use a container version of the
refrigerator() service from swsusp.
swsusp uses fake signals to freeze nearly all
kernel tasks before dumping the memory.

Finally, MCR exposes the internals of different
Linux subsystems and provides new services
to get and set their state. These interfaces are
by necessity very intrusive, and expose inter-
nal state. For an upstream migration solution,
using a /proc or /sysfs interface which ex-
poses more selective data would be more ap-
propriate.

4.1.2 User level utilities

Applications are made mobile simply by being
started under mcr-execute. The container
is created before the exec() of the command
starting the application. It is maintained around
the application until the last process dies.

mcr-checkpoint and mcr-restart in-
voke and orchestrate the overall checkpoint or
restart of a container. These commands also
perform the get and set of the resources which
are global to a container, as opposed to those lo-
cal to a single process within the container. For
instance, this is where the SYSV IPC and file
descriptors are handled. They rely on the kernel
module (Section 4.1.3) to manage the container
and access kernel internals.

4.1.3 Kernel module

The kernel module is the container manager in
terms of resource usage and resource virtualiza-
tion. It maintains a real time definition of the
container view around the application which
ensures that a checkpoint will be consistent at
any time.

It is in charge of the global synchronization
of the container during the CPR sequence. It
freezes all tasks running in the container, and
maps into the process a user level plugin (see
Section 4.1.4). It provides the synchronization
barriers which unrolls the full sequence of the
checkpoint before letting each process resume
its execution.

It also acts as a proxy to capture the states which
cannot be captured directly from user space. In-
ternal states handled by this module include, for
example, the process’ memory page mapping,
socket buffers, clone flags, and AIO states.
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4.1.4 User level plugin

When a checkpoint or a restart of a container is
invoked, the kernel module maps a plugin into
each process of the container. This plugin is
run in the process context and is removed af-
ter completion of the checkpoint. It serves 2
purposes. The first is synchronization, which
it orchestrates with the help of the kernel mod-
ule. Secondly, it performs get and set of states
which can be handled from user space using
standard syscalls. Such states include sigac-
tions, memory mapping, and rlimits.

When all threads of a process enter the plugin, a
master thread, not necessarily the main thread,
is elected to handle the checkpoint of the re-
sources at process level. The other threads only
checkpoint the resources at thread level, like
cpu state.

4.2 Linux subsystems CPR

The following subsections describe the check-
point and the restart of the essential resources
without doing a deep dive in all the issues
which need to be addressed. The following sec-
tion 5 will delve deeper into selected issues for
the interested reader.

4.2.1 CPU state

Checkpointing the cpu state is indirectly done
by the kernel because the checkpoint is signal
oriented: it is saved by the kernel on the top
of the stack before the signal handler is called.
This stack is then saved with the rest of the
memory. At restart, the kernel will restore the
cpu state in sigreturn() when it jumps out
of the signal handler.

4.2.2 Memory

The memory mapping is checkpointed from
the process context, parsing /proc/self/

maps. However, some vm_area flags (i.e.
MAP_GROWSDOWN) are not exposed through
the /proc file system. The latter are read from
the kernel using the kernel module. The same
method is used to retrieve the list of the mapped
pages for each vm_area and reduce signifi-
cantly the size of the snapshot.

Special pages related to POSIX shared mem-
ory and POSIX semaphores are detected and
skipped. They are handled by the checkpoint
of resources global to a container.

4.2.3 Signals

Signal handlers are registered using
sigaction() and called when the pro-
cess gets a signal. They are checkpointed and
restarted using the same service in the process
context. Signals can be sent to the process
or directly to an invidual thread using the
tkill() syscall. In the former, the signal
goes into a shared sigpending queue, where
any thread can be selected to handle it. In
the latter, the signal goes to a thread private
sigpending queue. To guarantee correct signal
ordering, these queues must be checkpointed
and restored separately using a dedicated
kernel service.

4.2.4 Process hierarchy

The relationships between processes must be
preserved across CPR sequences. Groups and
sessions leaders are detected and taken into ac-
count. At checkpoint, each process and thread
stores in the snapshot its execution command
using /proc/self/exe and its pid and ppid
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using getpid() and getppid(). Threads
also need to save their tid, ptid, and their
stack frame. At restart time, the processes
are recreated by execve() and immediately
killed with the checkpoint signal. Each process
then jumps into the user level plugin (See Sec-
tion 4.1.4) and spawns its children. Each pro-
cess also respawns its threads using clone().
The process tree is recreated recursively. On
restart, attention must be paid to correctly set-
ting the pid, pgid, tid, tgid for each newly cre-
ated process and thread.

4.2.5 Interprocess communication

The contents and attributes of SYSV IPCs, and
more recently POSIX IPCs, are checkpointed
as resources global to a container, excepting se-
mundos.

Most of the IPC resource checkpoint is done at
the user level using standard system calls. For
example, mq_receive() to drain all mes-
sages from a queue, and mq_send() to put
them back into the queue. The two main draw-
backs to such an approach are that access time
to resources are altered and that the process
must have read and write access to them. Some
functionalities like mq_notify() are a bit
trickier. In these cases, the kernel sends noti-
fication cookies using an AF_NETLINK socket
which also needs to be checkpointed.

4.2.6 Threads

Every thread in a process shares the same mem-
ory, but has its own register set. The threads can
dump themselves in user context by asking the
kernel for their properties. At restart time, the
main thread can read other threads’ data back
from the snapshot and respawn each with its
original tid.

The thread local storage contains the thread
specific information, data set by pthread_

setspecific() and the pthread_self()

pointer. On some architectures it is stored in
a general purpose register. In that case it is
already covered in the signal handler frame.
But on some other architectures, like Intel, it is
stored in a separate segment, and this segment
mapping must be saved using a dedicated call
to kernel.

4.2.7 Open files

File descriptors reference open files, which can
be of any type, including regular files, pipes,
sockets, FIFOs, and POSIX message queues.

CPR of file descriptors is not done entirely in
the process context because they can be shared.
Processes get their fd list by walking /proc/

self/fd. They send this list, using ancillary
messages, to a helper daemon running in the
container during the checkpoint. Using the ad-
dress of the struct file as a unique identi-
fier, the daemon checkpoints the file descriptor
only once per container, since two file descrip-
tors pointing to the same opened file will have
the same struct file.

File descriptors 0, 1, and 2 are considered spe-
cial. We may not want to checkpoint or restart
them if we do the restart on another login
console for example. The file descriptors are
tagged and bypassed at checkpoint time.

4.2.8 Asynchronous I/O

Asynchronous I/Os are difficult to handle by
nature because they can not easily be frozen.
The solution we found is to let the process reach
a quiescence point where all AIOs have com-
pleted before checkpointing the memory. The
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other issue to cover is the ring buffer of com-
pleted events which is mapped in user space
and filled by the kernel. This memory area
needs to be mapped at the same address when
the process is restarted. This requires a small
patch to control the address used for the map-
ping.

5 Zooming in

This section will examine in more detail three
major aspects of application mobility. The first
topic covers a key requirement in process mi-
gration: the ability to restart a process keep-
ing the same pid. Next we will discuss issues
and solutions to VM migration, which has the
biggest impact on performance. Finally, we
will address network isolation and migration of
live network communications.

5.1 Process Virtualization

A pid is a handle to a particular task or task
group. Inside the kernel, a pid is dynamically
assigned to a task at fork time. The relationship
is recorded in the pid hash table (pid → task)
and remains in place until a task exits. For sys-
tem calls that return a pid (e.g. getpid()),
the pid is typically extracted straight out of
the task structure. For system calls that uti-
lize a user provided pid, the task associated
with that pid is determined from the pid hash
table. In addition various checks need to be
performed that guarantee the isolation between
users and system tasks (in particular during the
sys_kill() call).

Because pids might be cached at the user
level, processes should be restarted with their
original pids. However, it is difficult if not
impossible to ensure that the same pid will

always be available upon restart of a check-
pointed application, as another process could
already have been started with this pid. Hence,
pids need to be virtualized. Virtualization in
this context can be and is interpreted in vari-
ous manners. Ultimately the requirement, that
an application consistently sees the same pid
associated with a task (process/thread) across
CPR, must be satisfied.

There are essentially three issues that need to
be dealt with in any solution:

1. container init process visibility,

2. where in the kernel the virtualization inter-
ception will take place,

3. how the virtualization is maintained.

Particularly 1. is responsible for the non-trivial
complexities of the various prototypes. It stems
from the necessity to “rewrite” the pid relation-
ships between the top process of a container
(short cinit) and its parent. cinit essen-
tially lives in both contexts, the creating con-
tainer and the created container. The creat-
ing container requires a pid in its context for
cinit to be able to deploy regular wait()
semantics. At the same time, cinitmust refer
to its parent as the perceived system init process
(vpid = 1).

5.1.1 Isolation

Various solutions have been proposed and im-
plemented. Zap [12] intercepts and wraps all
pid related system calls and virtualizes the pids
in the interception layer through a pid ↔ vpid
lookup table associated with the caller’s con-
tainer either before and/or after calling the orig-
inal syscall implementation with the real pids.
The benefit of this approach is that the kernel
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does not need to be modified. However, the
ability of overwriting the syscall table is not a
direction Linux embraces.

MCR, presented in greater detail in Section 4,
pushes the interception further down into the
various syscalls itself, but also utilizes a pid ↔
vpid lookup function. In general, the calling
task provides the context for the lookup.

The isolation between containers is imple-
mented in the lookup function. Tasks that
are created inside a container are looked up
through this function. For global tasks the pid
== vpid holds. In both implementations the
vpid is not explicitly stored with the task, but
is determined through the pid ↔vpid lookup
each and every time. On restart tasks can
be recreated through the fork(); exec()
sequence and only the lookup table needs to
record the different pid. The cinit parent
problem mentioned earlier is solved by map-
ping cinit twice, in the created context as
vpid=1 and in the creating container contexts
with the assigned vpid. The lookup function is
straight forward, essentially we need to ensure
that we identify any cinit process and return
the vpid/task associated with it relative to the
provided container context.

The OpenVZ implementation [7] provides an
interesting, yet worthwhile optimization that
only requires a lookup for tasks that have
been restarted. OpenVZ relies on the fact that
tasks do have a unique pid when tasks are in
their original incarnation (not yet C/R’d). The
lookup function, which is called at the same
code locations as the MCR implementation,
hence only has to maintain the isolation prop-
erty. In the case of a restarted task the unique-
ness can no further be guaranteed, so the pid
must be virtualized. Common to all three ap-
proaches is the fact that virtual pids are all rela-
tive to their respective containers and that they
are translated into system-wide unique pids.
The guts of the pidhash have not changed.

A different approach is taken by the namespace
proposal [6]. Here, the container principle is
driven further down into the kernel. The pid-
hash now is defined as a ({pid,container} →
task) function. The namespace approach natu-
rally elevates the container as a first class ker-
nel object. Hence minor changes were required
to the pid allocation which maintains a pidmap
for each and every namespace now. The benefit
of this approach is that the code modifications
clearly highlight the conditions where con-
tainer boundaries need to be crossed, where in
the earlier virtualization approach these cross-
ings came implicitly through the results of the
lookup function. On the other hand, the names-
pace approach needs special provisioning for
the cinit problem. To maintain the ability to
wait() on the cinit process from the cinit’s
parent (child_reaper), a task->wid is de-
fined, that reflects the pid in the parent’s context
and on which the parent needs to wait. There is
no clear recommendation between the names-
pace and virtualization approach that we want
to give in this paper; both the OpenVZ and the
namespace proposal are very promising.

5.1.2 CPR on Process Virtualization

The CPR of the Process Virtualization is
straight forward in both cases. In the ZAP,
MCR and OpenVZ case, the lookup table is
recreated upon restart and populated with the
vpid and the real pid translations, thus requir-
ing the ability to select a specific vpid for a
restarted process. Which real pid is chosen is
irrelevant and is hence left to the pidmap man-
agement of the kernel. In the namespace ap-
proach since the pid selection is pushed into
the kernel a function requires that a task can
be forked at a specific pid with in a container’s
pidmap. Ultimately, both approaches are very
similar to each other.
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5.2 CPR on the Linux VM

At first glance, the mechanism for checkpoint-
ing a process’s memory state is an easy task.
The mechanism described in section 2 can be
implemented with a simple ptrace.

This approach is completely in user space, so
why is it not used in the MCR prototype, nor
any commercial CPR systems? Or in other
words, why do we need to push certain func-
tionalities further down into the kernel?

5.2.1 Anonymous Memory

One of the simplest kind of memory to check-
point is anonymous memory. It is never used
outside the process in which it is allocated.

However, even this kind of memory would have
serious issues with a ptrace approach.

When memory is mapped, the kernel does not
fill it in at that time, but waits until it is used
to populate it. Any user space program do-
ing a checkpoint could potentially have to it-
erate over multiple gigabytes of sparse, entirely
empty memory areas. While such an approach
could consolidate such empty memory after the
fact, simply iterating over it could be an incred-
ibly significant resource drain.

The kernel has intimate knowledge of which
memory areas actually contain memory, and
can avoid such resource drains.

5.2.2 Shared Memory

The key to successful CPR is getting a consis-
tent snapshot. If two interconnected processes
are checkpointed at different times, they may
become confused when restarted. Success-
ful memory checkpointing requires a consistent

quiescence of all tasks sharing data. This in-
cludes all shared memory areas and files.

5.2.3 Copy on Write

When a process forks, both the forker and the
new child have exactly the same view of mem-
ory. The kernel gives both processes a read-
only view into the same memory. Although not
explicit, these memory areas are shared as long
as neither process writes to the area.

The above proposed ptrace mechanism would
be a very poor choice for any processes which
have these copy-on-write areas. The areas have
no practical bounds on their sizes, and are
indistinguishable from normal, writable areas
from the user’s (and thus ptrace’s) perspective.

Any mechanism utilizing the ptrace mecha-
nism could potentially be forced to write out
many, many copies of redundant data. This
could be avoided with checksums, but it causes
user space reconstruction of information about
which the kernel already explicitly knows.

In addition, user space has no way of explic-
itly recreating these copy-on-write shared areas
during a resume operation. The only mecha-
nism is fork, which is an awfully blunt instru-
ment by which to recreate an entire system full
of processes sharing memory in this manner.
The only alternative is restoring all processes
and breaking any sharing that was occurring be-
fore the checkpoint. Breaking down any shar-
ing is highly undesirable because it has the po-
tential to greatly increase memory utilization.

5.2.4 Anonymous Shared

Anonymous shared memory is that which is
shared, but has no backing in a file. In Linux
there is no true anonymous shared memory.
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The memory area is simply backed by a pseudo
file on a ram-based filesystem. So, there is no
disk backing, but there certainly is a file back-
ing.

It can only be created by an mmap() call
which uses the MAP_SHARED and MAP_
ANONYMOUS. Such a mapping is unique to a
single process and not truly shared. That is, un-
til a fork().

No running processes may attach to such mem-
ory because there is no handle by which to find
or address it, neither does it have persistence.
The pseudo-file is actually deleted, which cre-
ates a unique problem for the CPR system.

Since the “anonymous” file is mapped by some
process, the entire addressable contents of the
file can be recovered through the aforemen-
tioned ptrace mechanism. Upon resume, the
“anonymous” areas can be written to a real file
in the same ram-based filesystem. After all
processes sharing the areas have recreated their
references to the “anonymous” area, the file can
be deleted, preserving the anonymous seman-
tics. As long as the process performing the
checkpoint has ptrace-like capabilities for all
processes sharing the memory area, this should
not be difficult to implement.

5.2.5 File-backed Shared

Shared memory backed by files is perhaps the
simplest memory to checkpoint. As long as
all dirty data has been written back, requir-
ing filesystem consistency be kept between a
checkpoint and restart is all that is required.
This can be done completely from user space.

One issue is with deleted files. However, these
can be treated in the same way as “anonymous”
shared memory mentioned above.

5.2.6 File-backed Private

When an application wants a copy of a file to
be mapped into memory, but does not want any
changes reflected back on the disk, it will map
the file MAP_PRIVATE.

These areas have the same issues as anonymous
memory. Just like anonymous memory, sepa-
rately checkpointing a page is only necessary
after a write. When simply read, these areas
exactly mirror contents on the disk and do not
need to be treated differently from normal file-
backed shared memory.

However, once a write occurs, these areas’
treatment resembles that of anonymous mem-
ory. The contents of each area must be read
and preserved. As with anonymous memory,
user space has no detailed knowledge of spe-
cific pages having been written. It must sim-
ply assume that the entire area has changed, and
must be checkpointed.

This assumption can, of course, be overridden
by actually comparing the contents of memory
with the contents of the disk, choosing not to
explicitly write out any data which has not ac-
tually changed.

5.2.7 Using the Kernel

From the ptrace discussions above, it should
be apparent that the he various kinds of mem-
ory mappings in Linux can be checkpointed
from userspace while preserve many of their
important pre-checkpoint attributes. However,
it should now be apparent that user space lacks
the detailed knowledge to do these operations
efficiently.

The kernel has exact knowledge of exactly
which pages have been allocated and popu-
lated. Our MCR prototype uses this informa-
tion to efficiently create memory snapshots.
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It walks the pagetables of each memory area,
and marks for checkpoint only those pages
which actually have contents, and have been
touched by the process being checkpointed. For
instance, it records the fact that “page 14” in
a memory area has contents. This solves the
issues with sparsely populated anonymous and
private file-backed memory areas, because it
accurately records the process’s actual use of
the memory.

However, it misses two key points: the simple
presence of a page’s mapping in the page tables
does not indicate whether its contents exactly
mirror those on the disk.

This is an issue for efficiently checkpointing the
file-backed private areas because the page may
be mapped, but it may be either a page which
has been only read, or one to which a write has
occurred. To properly distinguish between the
two, the PageMappedToDisk() flag must
be checked.

5.2.8 File-backed Remapped

Assume that a file containing two pages worth
of data is mmap()ed. It is mapped from the
beginning of the file through the end. One
would assume that the first page of that map-
ping would contain the first page of data from
the disk. By default, this is the behavior. But,
Linux contains a feature which invalidates this
assumption: remap_file_pages().

That system call allows a user to remap a mem-
ory area’s contents such that the nth page of a
mapping does not correspond to the nth page
on the disk. The only place in which the in-
formation about the mapping is stored is in the
pagetables. In addition, the presence of one of
these areas is not openly available to user space.

Our user space ptrace mechanism could likely
detect these situations by double-checking that

each page in a file-backed memory area is truly
backed by the contents on the disk, but that
would be an enormous undertaking. In addi-
tion, it would not be a complete solution be-
cause two different pages in the file could con-
tain the same data. Userspace would have abso-
lutely no way to uniquely identify the position
of a page in a file, simply given that page’s con-
tents.

This means that the MCR implementation is
incomplete, at least in regards to any mem-
ory area to which remap_file_pages() has
been applied.

5.2.9 Implementation Proposal

Any effective and efficient checkpoint mecha-
nism must implement, at the least:

1. Detection and preservation of sharing of
file-backed and other shared memory ar-
eas for both efficiency and correctness.

2. Efficient handling of sparse files and un-
touched anonymous areas.

3. Lower-level visibility than simply the file
and contents for remap_file_pages()
compatibility (such as effective page table
contents).

There is one mechanism in the kernel today
which deals with all these things: the swap
code. It does not attempt to swap out areas
which are file backed, or sparse areas which
have not been populated. It also correctly han-
dles the nonlinear memory areas from remap_

file_pages().

We propose that the checkpointing of a pro-
cess’s memory could largely be done with a
synthetic swap file used only by that container.
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This swap file, along with the contents of
the pagetables of the checkpointed processes,
could completely reconstruct the contents of a
process’ memory. The process of checkpoint-
ing a container could become very similar to
the operation which swsusp performs on an
entire system.

The swap code also has a feature which makes
it very attractive to CPR: the swap cache. The
swap cache allows a page to be both mapped
into memory and currently written out to swap
space. The caveat is that, if there is a write
to the page, the on-disk copy must be thrown
away.

Memory which is very rarely written to, such
as the file-backed private memory used in the
jump table in dynamically linked libraries, has
the most to gain from the swap cache. Users of
this memory can run unimpeded, even during
a checkpoint operation, as long as they do not
perform writes.

Just as has been done with other live cross-
system migration[11] systems, the process of
moving the data across can be iterative. First,
copy data in several passes until, despite the ef-
forts to swap them out, the working set size of
the applications ceases to decrease.

The application-level approach has the poten-
tial to be at least marginally faster than the
whole-system migration because it is only con-
cerned with application data. Xen must deal
with the kernel’s working set in addition to the
application. This must increase the amount of
data which must be migrated, and thus must in-
crease the potential downtime during a migra-
tion.

5.3 Migrating Sockets

In Section 3.4, the needs for a network migra-
tion were roughly defined. This section focuses

on the four essential networking components
required for container migration: network iso-
lation, network quiescent points, network state
access for a CPR, and network resource clean-
up.

5.3.1 Network isolation

The network interface isolation consists of se-
lectively revealing network interfaces to con-
tainers. These can be either physical or aliased
interfaces. Aliased interfaces are more flexi-
ble for managing the network in the contain-
ers because different IP addresses can be as-
signed to different containers with the same
physical network interface. The net_device
and in_ifaddr structures have been modi-
fied to store a list of the containers which may
view the interface.

The isolation ensures that each container uses
its own IP address. But any return packet must
also go to the right interface. If a container con-
nects to a peer without specifying the source
address, the system is free to assign a source
address owned by an another container. This
must be avoided. The tcp_v4_connect()
udp_sendmsg() functions are modified in
order to choose a source address associated
with an interface visible from the source con-
tainer.

The network isolation ensures that network
traffic is dispatched to the right container.
Therefore it becomes quite easy to drop the
traffic for any specific container.

5.3.2 Reaching a quiescent point

As the processes need to reach a quiescent point
in order to stop their activities, the network
must reach this same point in order to retrieve
network resource states at a fixed moment.
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This point is reached by blocking the network
traffic for a specified container. The filtering
mechanism relies on netfilter hooks. Every
packet is contained in a struct skbuff.
This structure has a link to the struct sock
connection which has a record of the owner
container. Using this mechanism, packets re-
lated to a container being checkpointed can be
identified and dropped.

For dropping packets, iptables is not directly
suitable because each drop rule returns a NF_
DROP, which interacts with the TCP stack. But,
we need the TCP stack to be frozen for our
container. So a kernel module has been im-
plemented which drops the packets but returns
NF_STOLEN instead of NF_DROP.

This of course relies on the TCP protocol’s re-
transmission of the lost packets. However, traf-
fic blocking has a drawback: if the time needed
for the migration is too large, the connections
on the peers will be broken. The same will
occur if the TCP keep alive time is too small.
This encourages any implementation to have a
very short downtime during a migration. How-
ever, note that, when both sides of a connection
are checkpointed simultaneously, there are no
problems with TCP timeouts. In that case the
restart could occurs years later.

5.3.3 Socket CPR

Now that we have successfully blocked the traf-
fic and frozen the TCP state, the CPR can actu-
ally be performed.

Retrieving information on UDP sockets is
straightforward. The protocol control block is
simple and the queues can be dropped because
UDP communication is not reliable. Retriev-
ing a TCP socket is more complex. The TCP
sockets are classified into two groups: SS_
UNCONNECTED and SS_CONNECTED. The

former have little information to retrieve be-
cause the PCB (Protocol Control Block) is not
used and the send/receive queues are empty.
The latter have more information to be check-
pointed, such as information related to the
socket, the PCB, and the send/receive queues.
Minisocks and the orphan sockets also fall in
the connected category.

A socket can be retrieved from /proc be-
cause the file descriptors related to the current
process are listed. The getpeername(),
getsockname() and getsockopt() can
be directly used with the file descriptors. How-
ever, some information is not accessible from
user space, particularly the list of the minisocks
and the orphaned sockets, because no fd is as-
sociated with them. The PCB is also unacces-
sible because it is an internal kernel structure.
MCR adds several accessors to the kernel inter-
nals to retrieve this missing information.

The PCB is not completely checkpointed and
restored because there is a set of fields which
need to be modified by the kernel itself. For
example, the round time trip values.

5.3.4 Socket Cleanup

When the container is migrated, the local net-
work resources remaining in the source host
should be cleaned up in order to avoid dupli-
cate resources on the network. This is done us-
ing the container identifier. The IP addresses
can not be used to find connections related to
a container because if several interconnected
containers are running on the same machine,
there is no way to find the connection owner.

5.3.5 CPR Dynamics

The fundamentals for the migration have been
described in the previous sections. Figure 2
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illustrates how they are used to move network
resources from one machine to an another.
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Figure 2: Migrating network resources

1. Creation

A network administration component is
launched; it creates an aliased interface
and assigns it to a container.

2. Running

The IP address associated with the aliased
interface is the only one seen by the appli-
cations inside the container.

3. Checkpoint

(a) All the traffic related to the aliased
interface assigned to the container is
blocked.

(b) The network resources are retrieved
for each kind of socket and saved:
addresses, ports, multicast groups,
socket options, PCB, in-flight data
and listening points.

4. Restart

(a) The traffic is blocked

(b) The network resources are set from
the file to the system.

(c) An ARP (adress request package) re-
sponse is sent to the network in or-
der to boost up and ensure correct
mac↔ ip address association.

(d) The traffic is unblocked.

5. Destruction

The traffic is blocked, the aliased interface
is destroyed and the sockets related to the
container are removed from the system.

6 What is the cost?

This section presents an overview of the cost
of virtualization in different frameworks. We
have focused on VServer, OpenVZ, and our
own prototype MCR, which are all lightweight
containers. We have also included Xen, when
possible, as a point of reference in the field of
full machine virtualization.

The first set of tests assesses the virtualization
overhead on a single container for each above
mentioned solution. The second measures scal-
ability of each solution by measuring the im-
pact of idle containers on one active container.
The last set provides performance measures of
the MCR CPR functionality with a real world
application.

6.1 Virtualization overhead

At the time of this writing, no single kernel
version was supported by each of VServer,
OpenVZ, and MCR. Furthermore, patches
against newer kernel versions come out faster
than we can collect results, and clearly by the
time of publication the patches and base ker-
nel used in testing will be outdated anyway.
Hence for each virtualization implementation
we present results normalized against results
obtained from the same version vanilla kernel.
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6.1.1 Virtualization overhead inside a con-
tainer

The following tests were made on quad PIII
700MHz running Debian Sarge using the fol-
lowing versions:

• VServer version vs2.0.2rc9 on a 2.6.15.4
kernel with util-vserver version
0.30.210

• MCR version 2.5.1 on a 2.6.15 kernel

We used dbench to measure filesystem load,
LMbench for microbenchmarks, and a kernel
build test for a generic macro benchmark. Each
test was executed inside a container, with only
one container created.
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Figure 3: Various tests inside a container

The results shown in figure 3 demonstrate that
the overhead is hardly measurable. OpenVZ,
being a full virtualized server, was not taken
into account.

6.1.2 Virtualization overhead within a vir-
tual server

The next set of tests were run in a full vir-
tual server rather than a simple container. For

these tests, the nodes used were 64bit dual
Xeon 2.8GHz (4 threads/2 real processors).
Nodes were equipped with a 25P3495a IBM
disk (SATA disk drive) and a Tigon3 gigabit
ethernet adapter. The host nodes were running
RHEL AS 4 update 1 and all guest servers were
running Debian Sarge. We ran tbench and a
2.6.15.6 kernel build test in three environments:
on the system running the vanilla kernel, on the
host system running the patched kernel, and in-
side a virtual server (or guest system). The ker-
nel build test was done with warmed up cache.

• VServer version 2.1.0 on a 2.6.14.4 kernel
with util-vserver version 0.30.209

• OpenVZ version 022stab064 on a 2.6.8
kernel with vzctl utilities version 2.7.0-
26

• Xen version 3.0.1 on a 2.6.12.6 kernel

The results are shown in the figures 4 and 5.
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Figure 4: tbench results regarding a vanilla ker-
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The OpenVZ virtual server did not survive all
the tests. tbench looped forever and the kernel
build test failed with a virtual memory alloca-
tion error. As expected, lightweight containers
outperform a virtual machine. Considering the
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Figure 5: System time of a kernel build regard-
ing a vanilla kernel

level of containment provided by Xen and the
configuration of the domain, using file-backed
virtual block device, Xen also behaved quite
well. It would surely have better results with
a LVM-backed VBD.

6.2 Resource requirement

Using the same tests, we have studied how
performance is impacted when the number of
containers increases. To do so, we have con-
tinously added idle containers to the system
and recorded the application performance of
the reference test in the presence of an increas-
ing number of idle containers. This gives some
insight in the resource consumption of the var-
ious virtualization techniques and its impact on
application performance. This set of tests com-
pared:

• VServer version 2.1.0 on a 2.6.14.4 kernel
with util-vserver version 0.30.209

• OpenVZ version 022stab064 on a 2.6.8
kernel with vzctl utilities version 2.7.0-
26

• Xen version 3.0.1 on a 2.6.12.6 kernel

• MCR version 2.5.1 on a 2.6.15 kernel
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The results are shown in the figures 6, 7, and 8.
Lightweight containers are not really impacted
by the number of idle containers. Xen over-
head is still very reasonable but the number of
simultaneous domains we were able to run sta-
bly was quite low. This issue is a bug in current
Xen, and is expected to be solved. OpenVZ
performance was poor again and did not sur-
vive the tbench test not the kernel build. The
tests should definitely be rerun with a newer
version.
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6.3 Migration performance

To illustrate the cost of a migration, we have
set up a simple test case with Oracle (http://
www.oracle.com/index.html) and Dots, a
database benchmark coming from the Linux
Test Project (http://ltp.sourceforge.
net/). The nodes used in our test were
dual Xeon 2.4GHz HT (4 cpus/2 real proces-
sors). Nodes were equipped with a ST380011A
(ATA disk drive) and a Tigon3 gigabit ethernet
adapter. Theses nodes were running a RHEL
AS 4 update 1 with a patched 2.6.9-11.EL ker-
nel. We used Oracle version 9.2.0.1.0 running
under MCR 2.5.1 on one node and Dots version
1.1.1 running on another node (nodes are linked
by a gigabit switch). We measured the dura-
tion of checkpoint, the duration of restart and
the size of the resulting snapshot with different
Dots cpu workloads: no load, 25%, 50%, 75%,
and 100% cpu load. The results are shown in
Figures 9 and 10.

The duration of the checkpoint is not im-
pacted by the load but is directly correlated to
the size of the snapshot (real memory size).
Using a swap file dedicated to a container
and incremental checkpoints in that swap file
(Section 5.2) should improve dramatically the
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checkpoint time. It will also improve service
downtime when the application is migated from
a node to another.

At the time we wrote the paper, we were not
able to run the same test with Xen, their migra-
tion framework not yet being available.

7 Conclusion

We have presented in this paper a motivation
for application mobility as an alternative to
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the heavier virtual machine approach. We dis-
cussed our prototype of application mobility
using the simple CPR approach. This proto-
type helped us to identify issues and work on
solutions that would bring useful features to the
Linux kernel. These features are isolation of
resources through containers, virtualization of
resources and CPR of the kernel subsystem to
provide mobility. We also went through the var-
ious other alternatives projects in that are cur-
rently persued within community and exempli-
fied the many communalities and currents in
this domain. We believe the time has come to
consolidate these efforts and drive the neces-
sary requirements into the kernel. These are the
necessary steps that will lead us to live migra-
tion of applications as a native kernel feature on
top of containers.
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9 Download
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