
TIPC: Providing Communication for Linux Clusters

Jon Paul Maloy
Ericsson Research, Montreal
jon.maloy@ericsson.com

Abstract

Transparent Inter Process Communication
(TIPC) is a protocol specially designed for ef-
ficient intra cluster communication, leveraging
the particular conditions present within clus-
ters of loosely coupled nodes.

TIPC provides a powerful infrastructure for de-
signing distributed, site-independent, scalable,
highly- available and high-performing applica-
tions, as well as a good support for cluster, net-
work and software management functionality.
In this paper, we will discuss the motives for
developing TIPC and describe its architecture.
Then, we will present the most important fea-
tures of TIPC, such as its functional, location
transparent, addressing scheme, lightweight
reactive connections, reliable multicast, sig-
nalling link protocol, topology subscription
services and more. We will also discuss the
various design decisions that influenced the im-
plementation of these features. We conclude
by describing the current implementation sta-
tus and our planned roadmap for TIPC.

1 Introduction

For the last six years, telecom equipment ven-
dor Ericsson has been developing and deploy-
ing a tailor-made reliable communication pro-
tocol, TIPC,for their cluster-based products.
This protocol has recently undergone a sig-
nificant redesign, and is now available as a
portable source code package of about 12,500

lines of C code. The code implements a Linux
kernel driver, a design that has made it possible
to improve performance (35% faster than TCP)
and minimize code footprint.

Figure 1:Functional View of TIPC

The current version is available under a dual
BSD/GPL license from [1]. TIPC is supported
on Linux 2.4 and 2.6; and several proprietary
portations to other OS’es (OSE, True64, Vx-
Works) also exist.

TIPC offers an interesting combination of fea-
tures, some of them quite unique, to achieve
the overall goal: to make the cluster act as one
single computer from a communication view-
point, while helping applications to keep track
of and adapt to topology changes. Figure 1 il-
lustrates a functional view of TIPC.
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2 Motivation

There are no standard protocols available today
that fully satisfy the special needs of applica-
tion programs working within highly available,
dynamic cluster environments. Clusters may
grow or shrink by orders of magnitude; mem-
ber nodes may crash and restart, routers may
fail and be replaced, services may be moved
around due to load balancing considerations,
etc. All this must be possibe to handle without
significant disturbances of the service offered
by the cluster. In order to minimize the effort
by the application programmers to deal with
such situations, and to maximize the chance
that they are handled in a correct and optimal
way, the cluster internal communication ser-
vice should provide special support, helping
the applications to adapt to changes in the clus-
ter. It should also, when possible, leverage the
special conditions present within cluster envi-
ronments to present a more efficient and fault-
tolerant communication service than more gen-
eral protocols are capable of.

2.1 Existing Protocols

TCP [2] has the advantage of being ubiquitous,
proven, and wellknown by most programmers.
Its most significant shortcomings in a real-time
cluster environment are the following:

• TCP lacks any notion of functional
addressing and addressing transparency.
Mechanisms exist (DNS, CORBA Nam-
ing Service) for transparent and dynamic
lookup of the correct IP-adress of a desti-
nation, but those are in general too static
and too inefficient to be useful in a dy-
namic, real-time environment.

• Performance is not as good as it could be,
especially for intra-node communication
and for short messages in general. For

intra-node communication, other more ef-
ficient mechanisms are available, at least
on Unix, but then the location of the des-
tination process has to be assumed, and
can not be changed. It is desirable to
have a protocol working efficiently for
both intra-node and inter-node messaging,
without forcing the user to distinguish be-
tween these cases in his code.

• The heavy connection setup/shutdown
scheme of TCP is a disadvantage in a dy-
namic environment. The minimum num-
ber of packets exchanged for even the
shortest TCP transaction is nine (SYN,
SYNACK, etc.), while with TIPC this can
be reduced to two, or even to one if con-
nectionless mode is used.

• The connection-oriented nature of TCP
makes it impossible to support true mul-
ticast.

Stream Control Transmission Protocol (SCTP)
[3] is message oriented; it provides some
level of user connection supervision, message
bundling, loss-free changeover, and a few more
features that may make it more suitable than
TCP as an intra-cluster protocol. Otherwise,
it has all the drawbacks of TCP already listed
above.

Apart from these weaknesses, neither TCP
nor SCTP provide any topology informa-
tion/subscription service, something that has
proven very useful both for applications and
for management functionality operating within
cluster environments.

Both TCP and SCTP are general purpose pro-
tocols, in the sense that they can be used safely
over the Internet as well as within a closed
cluster. This virtual advantage is also their
major weakness: they require funtionality and
header space to deal with situations that will
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never happen, or only infrequently, within clus-
ters.

2.2 Assumptions

The TIPC design is based on the following
assumptions, empirically known to be valid
within most clusters.

• Most messages cross only one direct hop.

• Transfer time for most messages is short.

• Most messages are passed over intra-
cluster connections.

• Packet loss rate is normally low; retrans-
mission is infrequent.

• Available bandwidth and memory volume
is normally high.

• For all relevant bearers packets are check-
summed by hardware.

• The number of inter-communicating
nodes is relatively static and limited at
any moment in time.

• Security is a less crucial issue in closed
clusters than on the Internet.

Because of the above one can use a simple,
traffic-driven, fixed-size sliding window proto-
col located at the signalling link level, rather
than a timer-driven transport level protocol.
This in turn gives a lot of other advantages,
such as earlier release of transmission buffers,
earlier packet loss detection and retransmis-
sion, and earlier detection of node unavailabil-
ity, only to mention some. Of course, situations
with long transfer delays, high loss rates, long
messages, security issues, etc. must be dealt
with as well, but rather from the viewpoint of
being exceptions than as the general rule.

3 Five-Layer Network Topology

From a TIPC viewpoint the network is orga-
nized in a five-layer structure (Figure 2).

Figure 2:TIPC Network Topology

The top level is theTIPC network. This is
the ensemble of all computers (nodes) inter-
connected via TIPC, i.e., the domain where
any node can reach any other node by using
a TIPC network address. A TIPC network is
distringuished from other networks by itsnet-
work identity, a 32-bit value that is known by
all nodes.

The next level in the hierarchy is an entity
called zone. This “cluster of clusters” is
the maximum scope of location transparency
within a network, i.e., the domain where any
process can reach any other process by using
a functional address rather than a network ad-
dresses.

The third level is what we call thecluster. This
is a group of nodes interconnected all-to-all via
one or two TIPC links.

The fourth level is the individualsystem node,
or justnode. There may be up to 2047 system
nodes in a cluster.

The lowest level is theslave node. Slave nodes
provide the same properties regarding location
transparency and availability as system nodes,
but they don’t need full physical connectivity
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to the rest of the cluster. One link to one system
node is sufficient, although there may be more
for redundancy reasons.

All entities within a TIPC network are accessed
using a TIPC network address, a 32-bit value
subdivided into a zone, cluster, and node field.
This address is internally mapped to the ad-
dress type for the communication media actu-
ally used, e.g., an Ethernet address or an IP-
address/port number tuplet.

4 Location-Transparent
Functional Addressing

To present a cluster as one computer, the ad-
dressing scheme used must hide the physical
location of a requested service to its users. To
achieve this, TIPC provides a functional ad-
dress type, calledport name, to be used both
for connectionless messaging and connection
setup calls. Binding a socket to a port name
corresponds to binding it to a port number in
other protocols, except that the port name is
unique and has validity for the whole cluster,
not only the local node. A caller wanting to set
up a connection needs only to specify this ad-
dress, and the TIPC internal translation service
ensures that the request ends up in the right
socket, on the right node.

A port name consists of two 32-bit fields. The
first field is called thename typeand typically
identifies a certain service type or function.
The second field is thename instanceand is
used as a key for accessing a certain instance
of the requested service. This address structure
gives excellent support for both service parti-
tioning and service load sharing.

Further support for service partitioning is pro-
vided by an address type calledport name se-
quence. This is a three-integer structure defin-
ing a range of port names, i.e., a name type plus

the lower and upper boundary of the instance
range. By allowing a socket to bind to a se-
quence, instead of just an individual port name,
it is possible to partition a service’s scope of re-
sponsibility into sub-ranges, without having to
create a vast number of sockets to do so.

Figure 3:Functional Addressing

This addressing scheme is illustrated by the
example in Figure 3. Two processes, partition
A and partition B of the servicefoo, bind their
sockets to the port name sequences[foo,0,99]
and[foo,100,199]respectively (foo represents
the name type part of the sequence). A
process wanting to send a message to instance
number 33 of that service, uses the port name
[foo,33] as destination address. The TIPC
name translation function will find that the
indicated instance is within the range bound to
by partition A, and directs the message to A’s
socket.

There are very few limitations on how
name sequences may be bound to sockets. One
may bind many different sequences, or many
instances of the same sequence, to the same
socket, to different sockets on the same node,
or to different sockets anywhere in the cluster.

4.1 Binding Scope

Although complete location transparency is de-
sirable and sufficient for most applications,
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there must be ways to control this property for
those who may need to do so. Hence, when
binding a name sequence to a socket, it’s pos-
sible to qualify it with abinding scopeparam-
eter, indicating how far the knowledge of the
binding should be distributed in the network.
The typical behavior is to spread it to the nodes
in the binder’s cluster, but it is possible to ex-
tend the scope to the whole zone, or limit it to
the local node.

4.2 Lookup Domain

Similarly, a client may indicate alookup do-
main for a message or connection setup re-
quest. This is a TIPC network address not only
indicating where the lookup, i.e., the transla-
tion from a port name to socket address, should
first be done, but implicitly even the lookup al-
gorithm to be used.

Two such algorithms are available: 1)round-
robin lookup is used when the lookup do-
main is non-zero and there is more than one
matching server. Internally TIPC selects the
server from a circular list; which root entry is
stepped between each lookup. 2)Closest-first
lookup is used when the lookup domain is zero.
Here, the translation is always performed at the
client’s node and will first look for a match-
ing socket on the local node. If none such is
found, the algorithm will successively look for
matches elsewhere in the cluster and finally in
the whole zone.

5 Reliable Functional Multicast

Functional addressing is also used to provide
a reliable multicastservice. If the sender of
a message indicates a port name sequence in-
stead of a port name as destination, a replica
of the message is sent to all sockets bound to
a name sequence fully or partially overlapping
with that sequence (Figure 4).

Figure 4:Reliable Functional Multicast

Only one replica of the message is sent to each
identified target port, even if it is bound to more
than one matching sequence. Whenever pos-
sible, this function will make use of the mul-
ticast/broadcast properties of the carrying me-
dia. In such cases, reliability is ensured by a
specialreliable cluster broadcast[4][5] proto-
col implemented internally in TIPC.

6 Name Translation Table

Translation from port name to socket addresses
is performed transparently and on-the-fly via
an internal translation table, replicated on each
node. When a socket is bound to a port name
sequence, a corresponding table entry is dis-
tributed to all nodes within the binding scope,
i.e., the local cluster in most cases.

7 Topology Services

TIPC also provides a mechanism for inquiring
or subscribing for the availability of port names
or ranges of port names.

7.1 Functional Topology Service

This functional topology serviceis built on and
uses the contents of the local instance of the
name translation table.
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To access this service, a user makes a block-
ing or nonblocking request to TIPC, asking it
to indicate when a name sequence within the
requested range is bound to or unbound. The
request is associated with a timer, giving the
duration of the subscription. A timer value of
zero causes the call to return or issue a sub-
scription event immediately, making it a pure
inquiry, while a value of -1 makes it stay for-
ever, indicating every change pertaining to the
requested name sequence.

Figure 5:Functional Topology Subscription

Figure 5 illustrates this service: If the client
process (see also example in Figure 3) wants
to syncronize itself with the servers before
starting any communication he issues asub-
scribe()call to TIPC, telling it to indicate when
a server overlapping with the subscribed range
becomes available. Since both ranges of par-
tition A and B are within the given range
[foo,0,500], the client will receive two such in-
dications, informing about the exact range of
the new bindings. If there is only a partial
overlap, e.g., if the client should subscribe for
[foo,0,150] instead, he will only be informed
about the actual overlap, i.e.,[foo,100,150]for
partition B.

7.2 Physical Topology Service

The physical network topology may be con-
sidered a special case of the functional topol-

ogy, and can be kept track of in the same
way. Hence, to subscribe for the availabil-
ity/disappearance of a specific node, a group
of nodes, or a whole cluster, the user specifies
a dedicated port name sequence, representing
this function and the range of nodes he wants
to subscribe for. A special name type (zero)
is used for this purpose, while the lower and
upper boundaries are represented by TIPC net-
work addresses—as described earlier, those are
in reality 32-bit numbers.

Figure 6:Physical Topology Subscription

In the example in Figure 6, the client process
subscribes for the node range [0,9] within zone
number 1, cluster number 1. Hence, when
node <1.1.3> (i.e., zone 1, cluster 1, node
3) establishes a link to the client’s node, the
client will immediately be informed about this.
For this particular service, TIPC will by it-
self bind/unbind the corresponding port name
as soon as it discovers or loses contact with a
node.

8 Lightweight Connections

The number of active user connections within
a big cluster may be extremely large, and each
cluster node must be able to establish and ter-
minate thousands of such connections per sec-
ond.
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8.1 Simple Setup/Shutdown

To deal with this dynamism, TIPC connections
are made very lighweight, in reality leaving the
user to decide the setup/shutdown sequence.
The protocol as such does not specify how con-
nections are established and shut down, so an
application caring about performance is free
to use its own scheme, e.g., only exchanging
payload-carrying messages.

For convenience an alternative, TCP-style con-
nection type is also provided on Linux, with
exchange of hidden protocol messages and
stream-oriented data exchange.

8.2 Reactive Connections

TIPC connections are highly reactive and give
the users almost immediate failure indication
if anything should happen at the endpoints, or
to the media between them. This is due to
a connection supervision and abortion mech-
anism, which takes advantage of the properties
of the local operating system to detect process
crashes, or the status of the concerned links to
detect node crashes or carrier failure. When
any of this happens, a specialconnection shut-
down message is spontaneously generated by
TIPC and sent to the affected endpoint or end-
points, along with an appropriate error code.
This error code delivered up to the user in the
failure indication. In some cases, when the
failure is detected due to inability to deliver
a message, the original message is returned to
the sender along with the error code, to further
enable him to analyze the situation and take
proper action. Thismessage rejectionmech-
anism is also used when connection-less mes-
sages are undeliverable.

9 Link-Level Protocol

Assuming that most clusters are relatively
static in size, some of the tasks normally per-
formed at the transport protocol level have
been moved down to the signalling link level.

9.1 Link-level Retransmission

Implementing the retransmission protocol at
this level has several advantages. First, it
gives better resource utilization since all pack-
ets, connectionless and connection oriented,
are funneled into one single packet sequence
per node pair. Each packet can hence carry
the acknowledge of many received packets, re-
gardless of their origin, and we need not keep
transmission buffers longer than strictly neces-
sary. Second, packet losses can be detected and
restransmission performed earlier than would
otherwise be the case. Third, packet delivery
and sequentiality guaranteed at the link level
eliminates any need for per packet timers at the
transport level—a background timer per link
is sufficient to ensure those properties. As a
result, we obtain a packet flow that is both
smoother and more “traffic driven” than with
corresponding transport level protocols, which
often rely on timers to keep traffic running.

9.2 Link-level Node Supervision

Internode connectivity is also ensured at the
link level. First, a background timer for each
link endpoint supervises the traffic flow on the
link and initiates a probing procedure if the
peer is silent too long. Second, if a link is
found to have failed after probing, there is a
mechanism to steer its traffic over to the re-
maining link to the same node, if there is one.
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9.3 Link-level Redundancy and Load Sharing

In fact, having two links and two carriers be-
tween each node pair is considered the nor-
mal configuration when using TIPC, as it elim-
inates any single point of failure in the commu-
nication service. The failover procedure used
on such occations is completely transparent to
the users, and complies to the same QOS as
is guaranteed by each individual link: no mes-
sage losses, no duplicates, and in-sequence de-
livery. The relationship between dual links
is configurable; while full load sharing is the
default behavior, an active-standby scheme is
also supported.

Detection time for a failed link, and conse-
quently for a crashed node, is configurable and
is by default set to 1500 ms in the current im-
plementation.

10 Automatic Neighbour Detection

Signalling links may be configured manually,
but this is a tedious task if the size of a cluster
runs up to dozens or even hundreds of nodes.
Therefore, TIPC uses a designated neighbour
detection protocol to establish links between
nodes. Within a cluster this protocol is very
simple. Each starting node uses the multicast
or broadcast capability of the carrying media
to tell about its existence, and expects a corre-
sponding unicast response from all nodes rec-
ognizing it as part of the cluster.

Between clusters, both multicast and a uni-
cast “pilot” link may be used, and results in a
link pattern where each node in one cluster has
links to a configurable (default two) number of
nodes in the other cluster.

11 Performance

The performance figures we have are from the
Linux-2.4 version of TIPC. We have not yet
been able to do code optimizations and corre-
sponding measurements on the Linux-2.6 ver-
sion.

Performance was measured by letting a set of
16 process pairs on two nodes exchange mes-
sages in a ping-pong like manner at full speed.
This ensures that the CPUs always runs at
100% load, and we can assume that almost all
execution time is spent on transferring TIPC
messages. We measured the time it took to
exchange a message of a certain size 16 X 10
000 000 times, and divided the obtained value
with number of messages. The result gives
pure CPU execution time per message, auto-
matically excluding latency times on the net-
work and in the OS’s sceduling queues, which
is anyway the same for all protocols. For com-
parison, a similar measurement sequence was
done for TCP, on the same OS and hardware.

Table 1 shows measured execution time for
transferring a message process-to-process be-
tween two 750 Mhz Pentium III based nodes.
The communication media used was two par-
allel 100 Mb Fast Ethernet switches.

Msg Size TIPC TCP
[bytes] [µs] [µs]

64 25 38
256 29 42

1024 44 52
4096 176 178

16384 704 716
65408 3200 2800

Table 1:Inter Node Execution time (send + re-
ceive) for TIPC and TCP messages

The overall result shows that TIPC is around
35% faster than TCP for inter-node messages



Linux Symposium 2004 • Volume Two • 355

smaller than Ethernet MTU, while perfor-
mance is about the same for larger messages. A
similar measurement, where all processes were
kept on the same node, showed that TIPC is
about four times faster (6µs vs 25µs) than
TCP for 64 byte intra-node messages; the dif-
ference decreasing linearly with message size.
At 64 Kbyte messages performance was even
here almost the same.

12 Implementation

12.1 Source Code

The latest implementation on Linux is avail-
able as a source code package of 12,500 lines
of C-code from [1]. It compiles into a load-
able module of 167 Kbyte for the Linux-2.6
kernel, and it requires no kernel patches to be
installed. This version, just as an earlier one
for Linux-2.4, is stable, but still has some limi-
tations. Most notably, only single-cluster com-
munication is supported for now; it is not pos-
sible to set up links between nodes in different
clusters or different zones.

12.2 Standardization

Open Source Development Lab (OSDL) has
defined TIPC as a cornerstone in their Carrier
Grade Linux (CGL) strategy, and people from
OSDL are contributing actively to the code.
TIPC meet several Priority 1 requirements and
many Priority 2 requirements in the clustering
specifications of Carrier Grade Linux version
2.0 [7]. Within IETF, the ForCES Work Group
is considering TIPC to be used as transport pro-
tocol between forwarding and control elements
in distributed routers. An IETF-draft [4] with
a complete specification was presented for the
WG at IETF-59 for this purpose.

12.3 Roadmap

The goal is to have TIPC accepted as an in-
tegrated part of the Linux kernel in future
releases (2.7/2.8). Before the end of 2004,
we also want to have it accepted as the pre-
ferred protocol for intra cluster transport of the
ForCES protocol. Also, before the end of this
year, we plan to have developed full support for
inter-cluster and inter-zone communication, as
well as a redesigned slave node communication
framework.

13 Conclusion

Within Ericsson, TIPC has proven to be a very
useful toolbox for design of high-availability
clusters. It is our hope that this experience will
be repeated by others now as the potential of
advanced clustering is becoming more widely
recognized.
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