
A Directory Index for Ext2

Daniel Phillips

Abstract

The native filesystem of Linux, Ext2, inherits
its basic structure from Unix systems that were
in widespread use at the time Linus Torvalds
founded the Linux project more than ten years
ago. Although Ext2 has been improved and
extended in many ways over the years, it still
shares an undesireable characteristic with those
early Unix filesystems: each directory opera-
tion (create, open or delete) requires a linear
search of an entire directory file. This results in
a quadratically increasing cost of operating on
all the files of a directory, as the number of files
in the directory increases. The HTree direc-
tory indexing extension was designed and im-
plemented by the author to address this issue,
and has been shown in practice to perform very
well. In addition, the HTree indexing method
is backward and forward-compatible with ex-
isting Ext2 volumes and has a simple, compact
implementation. The HTree index is persis-
tent, meaning that not only mass directory op-
erations but single, isolated operations are ac-
celerated. These desirable properties suggest
the the HTree index extension is likely to be-
come part of the Ext2 code base during the
Linux 2.5 development cycle. hotel & travel
press photo archive audio key signing 2002
2001 2000 1999

1 Introduction

The motivation for the work reported in this
paper is to provide Linux’s native filesystem,
Ext2, with directory indexing, one of the stan-
dard features of a modern filesystem that it

has lacked to date. Without some form of
directory indexing, there is a practical limit
of a few thousand files per directory before
quadratic performance characteristics become
visible. To date, an applications such as a mail
transfer agent that needs to manipulate large
numbers of files has had to resort to some strat-
egy such as structuring the set of files as a
directory tree, where each directory contains
no more files than Ext2 can handle efficiently.
Needless to say, this is clumsy and inefficient.

The design of a directory indexing scheme to
be retrofitted onto a filesystem in widespread
production use presents some interesting and
unique problems. First among these is the need
to maintain backward compatibility with exist-
ing filesystems. If users are forced to recon-
struct their partitions then much of the con-
venience is lost and they might as well con-
sider putting in a little more work and adopt-
ing an entirely new filesystem. Perhaps more
importantly, Ext2 has proved to be more reli-
able than any of new generation of filesystems
available on Linux, in part due to its maturity,
but also no doubt partly due to its simplicity.
Ext2 has proved to be competitive with any of
the new filesystems in manipulating the rela-
tively small files and filesets (by today’s stan-
dards) that are common on typical installations.
Ext2’s suite of filesystem utilities which in-
cludes e2fsck for performing filesystem check-
ing and recovery, and debugfs for performing
manual filesystem examination and repair, is
particularly mature and capable. Finally, Ext2,
being Linux’s native filesystem, almost by def-
inition is the filesystem that gives the broadest
range of support for Linux’s many features.



Ottawa Linux Symposium 2002 426

The simplicity of Ext2’s design places a special
burden on the designer of a directory index-
ing extension to strive for a similar degree of
simplicity. The idea of adding BTree directory
indexing to Linux’s Ext2 filesystem has been
much discussed but never implemented, more
probably due to an aversion to complexity than
any laziness on the part of developers. Unfor-
tunately, a survey of implementations of direc-
tory indexing strategies in existing “big iron”
filesystems shows that the directory indexing
code by itself, is comparable in size to all of
Ext2. So a simple port of such code would not
achieve the desired results, and that would still
leave open the question of how to make the new
indexing facility backward compatible with ex-
isting Ext2 volumes.

In the event, with some luck, determination and
expert advice, I was able to come up with a
design that can be implemented in a few hun-
dred lines of code and which offers not only
superior performance with very large directo-
ries, but performance that is at least as good
as traditional Ext2 with small directories, and
not only backward compatibility with existing
Ext2 volumes, but forward compatibility with
pre-existing versions of Linux as well. In fact,
the new design uses the same directory block
format as Ext2 has traditionally used, and to
earlier versions of Linux, an indexed directory
appears to be a perfectly valid directory in ev-
ery detail.

2 Background

The earliest versions of Linux used the
Minix filesystem.[1] Recognizing its limita-
tions, Remy Card designed and implemented
the Extended Filesystem, BSD’s UFS. That de-
sign was improved and became the Second Ex-
tended Filesystem, or Ext2.

Ext2’s design is characterized by extreme sim-

plicity, almost to a fault. For example, certain
features that were planned for Ext2 were never
implemented, such as fragment support mod-
eled on UFS, and BTree directory indexing. In-
stead of adding features, Ext2 maintainers have
tended to concentrate on making the existing
features work better. Today Ext2 is well known
for its high degree of stability, and ruggedness
in the face of abuse. To some extent, the per-
haps subconscious philosophy of minimalism
can be credited for this. Nonetheless, as Linux
evolves it encounters ever-rising expectations
from its users, including those who have tra-
ditionally worked with “big iron” variants of
Unix and tend to measure the worth of Linux
by that yardstick. Pressure has increased to
address those areas where Ext2 does not scale
very well into enterprise-class applications.

Although there is a new crop of enterprise-
class filesystems appearing in Linux this
year—XFS and JFS, which were ported from
SGI’s Irix and IBM’s OS/2 respectively—there
exists a strong sentiment that Ext2 should
retain the role of Linux’s native filesystem,
both for pragmatic reasons such as its feature
set—by no accident well matched to Linux’s
requirements—and its stability. Perhaps there
is also an element of pride, since if anything
can be said to be the heart of Linux, it would
be its filesystem, Ext2. Whatever the rea-
son, motivation is strong to address the remain-
ing weaknesses that separate Ext2 from a true
enterprise-class filesystem. One of the most
obvious is the lack of any kind of directory in-
dexing: simple linear search is used, as it was
in the earliest days of Unix.

For some common operations, a linear direc-
tory search imposes anO(n2) performance
penalty where n is the number of files in a
directory. With n in the thousands, the ob-
served slowdown is very noticable. Typically,
enterprise-class filesystems use some form of
balanced tree indexing structure, which gives



Ottawa Linux Symposium 2002 427

O(Log(n)) performance for individual direc-
tory operations, orO(nLog(n)) across all the
files of a directory. Ext2 was expected even-
tually to adopt such a scheme and in fact some
provision was made for it in internal structures,
but none was ever implemented. That this was
never done should be ascribed to an aversion
to complexity rather than any laziness on the
part of Ext2 maintainers. After all, Ext2 in its
entirety consists of about 5,000 lines of code
and an implementation of a standard BTree al-
gorithm could easily double that.

At the Linux Storage Management Workshop
last year in Miami, Ted Ts’o described to
me some design ideas he had for a simpli-
fied BTree implementation. At the time, there
still seemed to be unresolved design issues
that could lead to significant complexity, so
implementation work was not begun at that
time. Some months later while describing
Ted’s ideas in a posting to a mailing list,
a fundamental simplification occurred to me,
namely that we could use logical addressing
for the BTree instead of physical, thus avoiding
any change to Ext’s existing metadata struc-
ture. Thus inspired, I went on to discard
the BTree approach, and invented a new type
of indexing structure whose characteristics lie
somewhere between those of a tree and a hash
table. Since I was unable to find anything simi-
lar mentioned in the literature I took the liberty
of giving this structure the name HTree, a hash-
keyed uniform-depth index tree.

After a week of intense development, and with
the assistance of my coworker Uli Luckas, I
managed to produce a prototype implementa-
tion with enough functionality to perform ini-
tial benchmarks. The measured results, which
Uli prepared for me in the form of a chart,
were described in a post to the Linux Ker-
nel mailing list that same day.[8] Aided by
the lopsided relationship betweenO(n2) and
O(nLog(n))complexity, I was able to show a

spectacular 145-times improvement[5] against
standard Ext2, for a test case which I had of
course chosen carefully. Whatever my bias, the
performance improvements in practice were
real and measurable. Suddenly Linux’s vener-
able Ext2 no longer seemed to be on the verge
of extinction in the face of competition from a
new crop of enterprise-class filesystems.

The original prototype achieved its perfor-
mance gains using a degenerate index tree con-
sisting of only a single block. In the follow-
ing months I carried on further development,
incorporating many suggestions from Andreas
Dilger, Ted and others, to finalize the disk for-
mat and bring my prototype to the a stage
where it could be tested in live production test-
ing. At this time, I, together with members of
the Ext3 development team (Stephen Tweedie,
Andrew Morton and Ted Ts’o) am preparing to
incorporate this feature into Ext3, which task
should be completed by the time this paper is
published.

3 Data Structures and Algorithms

HTree Data Structure

A flag bit in a directory’s inode indicates
whether a directory index is indexed or not. If
this bit is set then the first directory block is to
be interpreted as the root of an HTree index.

Given the design goal that HTree-indexed di-
rectories appear to preexisting versions of
Linux as normal, unindexed directory files, the
structure of an HTree every directory block is
dictated by the traditional Ext2 directory block
format. If this were not the case, then a vol-
ume with directories created with HTree in-
dexes would appear to have garbage in direc-
tories if mounted by an older version of Linux.
Fortunately, it is possible to place an empty di-
rectory entry record in a block which is actu-



Ottawa Linux Symposium 2002 428

ally an HTree index constructed so that the en-
tire block appears to be free when interpreted
as an Ext2 directory block, yet only the first 8
bytes are actually used. This leaves the remain-
der of the block free for HTree-specific struc-
tures.

The root of an HTree index is the first block of
a directory file. The leaves of an HTree are nor-
mal Ext2 directory blocks, referenced by the
root or indirectly through intermediate HTree
index blocks. References within the directory
file are by means of logical block offsets within
the file. The possibility of using direct physi-
cal pointers was considered for reasons of ef-
ficiency, but abandoned due to the onerous re-
quirement of incorporating special handling for
such pointers in many parts of Ext2 outside the
directory handling code. Luckily, it turned out
that with Linux’s recent change to logical in-
dexing of file data, logical block pointers are
no less efficient than physical ones.

An HTree uses hashes of names as keys, rather
than the names themselves. Each hash key ref-
erences not an individual directory entry, but a
range of entries that are stored within a single
leaf block. An HTree first level index block
contains an array of index entries, each con-
sisting of a hash keys and a logical pointer to
the indexed block. Each hash key is the lower
bound of a all the hash values in a leaf block
and the entries are arranged in ascending or-
der or hash key. Both hash keys and logical
pointers are 32-bit quantities. The lowest bit of
a hash key is used to flag the possibility of a
hash collision, leaving 31 bits available for the
hash itself.

The HTree root index block also contains an
array of index entries in the same format as a
first level index block. The pointers refer to
index blocks rather than leaf blocks and the
hash keys give the lower bounds for the hash
keys of the referenced index block. The HTree

root index also contains a short header, provid-
ing information such as the depth of the HTree
and information oriented towards checking the
HTree index integrity and such other functions
as specifying which of several possible hash
functions was used to create the directory.

Each index entry requires 8 bytes, so allowing
for a 32 byte header, a single 4K index block
can index up to 508 leaf blocks. Assuming
that each leaf block can hold about 200 entries
and each leaf block is 75% full, a single index
block can index about 75,000 names. A second
index level is required only for very large di-
rectories, which can accommodate somewhat
more than 30 million entries. A third level
would increase capacity to over 11 billion en-
tries. Such a large number of directory entries
is unlikely to be needed in the near future, so
the current implementation provides a maxi-
mum of two levels in the index trees.

Hash Probe

The first step in any indexed directory opera-
tion is to read the index root, the first block of
the directory file. Then a number of tests are
performed against the header of the index root
block in an attempt to eliminate any possibility
of a corrupted index causing a program fault
in the operating system kernel. It is intended
that the detection of any inconsistency would
cause the directory operation to revert to a lin-
ear search. In this way the user is given the best
possible chance to access data on a corrupted
volume. This mechanism also allows for cer-
tain changes to be made to the index structure
in the future; for example, more than two lev-
els might be allowed in the tree, while still al-
lowing earlier versions of the directory index
code to access the directory. Should such an
inconsistent index be detected an error flag is
set in the filesystem superblock so that appro-
priate warnings can be issued and the directory
index can be automatically rebuilt by the fsck



Ottawa Linux Symposium 2002 429

utility.

Next the hash value of the target name is com-
puted, and from that a determination is made
of which leaf block to search. The desired leaf
block is the one whose hash range includes the
hash of the target entry name. Since index en-
tries are of fixed size and maintained in sorted
order, a binary search is used here. The format
of an index entry is the same whether it refer-
ences a leaf block or an interior index node, so
this step is simply repeated if the index tree has
more than one level.

As the hash probe descends through index en-
tries an access chain is created, for use by the
lookup and creation operations described be-
low. Finally, the target block is read.

Entry Lookup

Once a target leaf block has been obtained
lookup proceeds exactly as without an index,
i.e., by linearly searching through the entries in
the block. If the target name is not found then
there is still a possibility that the target could
be found in the following leaf block due to a
hash collision. In this case, the parent index is
examined to see if the hash value of the succes-
sor leaf block hash has its low bit set, indicat-
ing that a hash collision does exit. If set, then
the hash value of the target string is compared
for equality to the successor block’s hash value,
less the collision bit. If it is the same then the
successor leaf block is read, the access chain
updated, and the search is repeated.

If the leaf block happens to be referenced by
the final index entry of an index block then the
successor hash value is obtained from the par-
ent index block, which has already been read.
If the possibility of a collision with the target
exists then the successor index block will be
read as a prelude to reading the successor leaf
block.

Although it sounds messy, the resolution of
hash collisions described here is accomplished
in just a few lines of code. Furthermore, it is
very efficient to determine whether a hash col-
lision with the target string could exist. There-
fore, the common case where no collision ex-
ists can be checked for without any significant
overhead. With a hash range of 31 bits colli-
sions will occur very rarely even in large direc-
tories, and collisions that lie on either side of a
block boundary will be rarer yet.

In summary, once the hash probe step has iden-
tified a leaf block to search, the target name
will always be found in that block if it exists,
except in the unlikely event its hash collides
with that of an entry in a successor block. Typi-
cally, then, the number of blocks that need to be
accessed to perform a lookup is two—the index
and the leaf —or three, for extremely large di-
rectories. Because the index tree consists of a
very small number of blocks, even for large di-
rectories, it is a practical certainty that they will
all be retained in cache across multiple opera-
tions on the same directory.

Entry Creation

Except for the leaf splitting operation—
described separately below—creation of en-
tries is simpler than lookup. The target leaf
block in which the entry will be created is lo-
cated as for a lookup operation (and with ex-
actly the same code) then, if there is sufficient
space, the entry is created in that block as in
unindexed Ext2. If the target block has insuf-
ficient space then the block is first split, as de-
scribed below, and the entry is created in either
the original block or the new block, according
to its hash value.

Entry Deletion

Deletion of a directory entry is accomplished
in exactly the same way as with no index: the



Ottawa Linux Symposium 2002 430

entry is located via a lookup operation, and
marked as free space, merging it with the pre-
ceding directory entry record if possible.

It is possible that, after a large number of dele-
tions and creations in a directory, a significant
amount of free space could accumulate in the
blocks which are indexed by only a narrow
range of hash values. In such a case, it is
would be desirable to coalesce some adjacent
blocks. So far, no form of directory entry coa-
lescing has been implemented in Ext2 and this
has caused few problems, if any. However, it
is unknown at this time how prone the HTree
algorithm is to fragmentation so it may turn
out to be necessary to implement coalescing
sooner rather than later, as opposed to relying
on the fsck utility.

Splitting Leaves and Index Blocks

Splitting a leaf block is the most complex step
in the HTree algorithm, accounting for some-
what more than half the lines of code in the im-
plementation. Nonetheless, there is little here
that is subtle or difficult.

Splitting a leaf block requires moving approx-
imately half the contents of the original to a
newly created block such that the original en-
tries are partitioned into two ranges of hash val-
ues. The two ranges are distinct, except that the
highest hash value of the lower range may be
the same as the lowest hash value of the upper
range. This exception is made necessary by the
possibility of hash collisions.

Since entries are stored unsorted in leaf nodes,
the first step of the partitioning is a sort. First,
all the entries in the block are scanned and a
hash value is computed for each one. The entry
locations and hash values are stored in a map,
and this map is sorted rather than the entries
themselves. The sort (a combsort) executes in
O(nLog(n)) time wheren is the number of en-

tries. It has been suggested to me that the par-
titioning could be done inO(n) time, but this
is true only if we are willing to pick ana pri-
ori pivot value for the partition. In any event,
the splitting occurs relatively rarely—for 4K
blocks, less than once per hundred creates—
and the sort is efficient.

In the current implementation, leaf blocks are
always split at the halfway point in terms of
number of entries, which is not entirely opti-
mal. At the expense of somewhat more com-
plexity the split point could be chosen in terms
of total data size and could take account of
the knowledge of which of the two blocks a
new entry will be inserted into. Currently, the
lowest hash value in the upper range is always
chosen as the lower bound of that range. An
improved strategy would use the hash value
which is exactly between the lower bounds of
the two adjoining hash ranges whenever pos-
sible, dividing up the hash space more evenly.
These two improvements would allow the the-
oretical 75% average fullness of leaf blocks to
be more closely approached.

After choosing the split point the entries of the
upper hash range are copied to the new block
and the remaining entries are compacted in the
original block. This is done with the aid of the
sort map described above. Some complexity in
the step arises from the desire to carry out this
operation within the space of the two blocks
involved plus a small amount of stack space,
so no working storage needs to be allocated.

Having split the entries, a new index entry con-
sisting of a pointer to and lower hash bound of
the new leaf block is inserted into the parent
index. This may require that the parent index
block be split or, if the index block is the root,
a new level is added to the tree. Since only
two levels of index are supported the recursion
does not go further than this in the current im-
plementation.



Ottawa Linux Symposium 2002 431

The lowest bit of the hash value of the new
leaf block is used to flag the relatively rare case
where the split point has been chosen between
two entries with the same hash value. This bit
forms part of the new leafs hash value and is
carried naturally through any recursive split-
ting of index blocks that is required. So, as far
as entry creation is concerned, just two lines
of code are required to handled the messy-
sounding problem of hash collisions in entry
creation. (A few more lines are required to
handle collisions on lookup.) As a side note, I
did manage to conceive and implement a much
more complex and hard to verify solution to
this hash collision problem, which attempted
to avoid splitting apart entries with equal hash
value. Then I realized that the rarity of the
event meant that the simple approach could
be used with no significant impact on perfor-
mance. In general, it is impossible to guarantee
that colliding entries will never have to be split
between blocks, since we may be so unlucky
as to have a large number of strings hash to the
same value.

Splitting an index block is trivial compared
to splitting a leaf. Half the index entries are
copied to a newly allocated index block, the
count fields of block blocks are updated, and
an index entry is created for the new block in
the same way as for a new leaf block. Adding
a new tree level is also trivial: the entries con-
tained in the root index are copied to a new
block and replaced by an index entry for the
new block. In the current implementation,
should the root of a two level tree be found
to be full then the index is deemed to be full
and the create operation will fail. At this point
the directory would contain several tens of mil-
lions of entries or the index would have be-
come badly fragmented. Though neither pos-
sibility is considered likely, both can be ad-
dressed by generalizing the implementation to
N levels, and the second could be corrected
by adding an index-rebuilding capability to the

fsck utility, or by implementing a coalesce-on-
delete feature as described in the penultimate
section of this paper.

After all necessary splitting and index updating
has been completed, and appropriate working
variables updated, a new directory entry is cre-
ated in the appropriate leaf block in the same
way as for unindexed Ext2.

4 Comparison to Alternatives

In this section I briefly examine three alterna-
tive directory index implementation techniques
that offer similar functionality to HTrees. All
three of these techniques have been used suc-
cessfully in other filesystems, but each of them
has some flaw that makes it less than perfect for
Ext2’s requirements and design philosophy.

BTrees

The BTree (“balanced tree”) algorithm offers
good average and worst case search times with
reasonably efficient insertion and deletion al-
gorithms. Some variation on the BTree struc-
ture is typically the choice for a directory in-
dexing design, and indeed BTree indexing is
used in at least a number of Linux’s supported
filesystems.

Linux’s ReiserFS[9] uses B*Trees which of-
fer a 1/3rd reduction in internal fragmentation
in return for slightly more complicated inser-
tions and deletion algorithms. Keys in Reis-
erFS BTrees are fixed-length hashes of the in-
dexed strings, therefore duplicate keys are al-
lowed to accommodate key collisions. and the
B*Tree algorithms are modified accordingly.
SGI’s XFS uses B+Trees with hashed keys.
IBM’s JFS (now ported to Linux) uses B+Trees
with full-length key strings in the leaf nodes
and minimal prefixes of the keys in the interior
nodes. This variant is called a Prefix BTree.



Ottawa Linux Symposium 2002 432

Though directory performance is seldom
specifically tested, all three of these filesystems
are known for their good performance with
large directories. Two of these three filesys-
tems use hash directory keys for the same rea-
son HTree uses them: the small fixed key size
gives a high branching factor and thus a shal-
low tree.

The main difference between an HTree and a
BTree is that the leaves of an HTrees are all at
the same depth. Leaf nodes do not have to be
specially marked and rebalancing is unneces-
sary, saving considerable complexity. A sec-
ond distinction is the an HTree has one index
entry for each leaf block whereas a BTree has
one index entry for each directory entry. This
means that an HTree has far fewer index blocks
than a BTree and is therefore roughly one level
shallower than a BTree with the same number
of entries. In fact, the high branching factor
and block granularity together make it improb-
able that an HTree will ever need to have more
than two index levels, which are sufficient to
contain several tens of millions of entries.

As names are inserted into and deleted from
a BTree it may happen that some of the leaf
nodes end up significantly further from the root
than others. If such imbalance becomes too ex-
treme then average search times may begin to
suffer. To combat this, BTree algorithms incor-
porate rebalancing steps that detect excessive
imbalance resulting from an insert or delete op-
eration and correct it by rearranging nodes of
the tree. Such rebalancing algorithms can be-
come complex in implementation, especially
when hash key collisions or additional require-
ments of B+Trees and B*Trees need to be han-
dled.

In summary, the various forms of BTrees have
all the functionality required for a directory in-
dex, but because of the rebalancing algorithms,
are more complex to implement than HTrees.

No clear advantage is offered in return.

Hash Tables

A normal hash table is a linear array of buckets,
and the hash key directly indexes the bucket
which is to be searched. Thus, finding the cor-
rect bucket to search is very fast. The chief
drawback is that the hash table’s size be cho-
sen to be neither too large nor too small. A
hash table that is too large will waste space and
one that is too small will cause many collisions.
Filesystem directories tend to vary in size by
many orders of magnitude, so choosing an ap-
propriate size for a hash table is problematic.
This problem can be solved by allowing the
hash table to grow as the number of strings in
the hash table increases. When the hash table
passes a certain threshold of fullness its con-
tents are transfered to a larger table, an oper-
ation called “rehashing.” If an integral factor
is used for the expansion then hash values do
not need to be recomputed and the process is
efficient.

A linear hash table with a rehashing opera-
tion is thus seems a promising avenue to ex-
plore for a directory index. The rehash opera-
tion is mildly unappealing for filesystem use—
how to store the hash table—how to represent
collisions—can’t use pointers in the objects—
interaction with collisions and rehashing . . .

Cached Index

The above-mentioned structural problems with
hash tables can all circumvented neatly if the
hash table is not persistent on disk but is in-
stead constructed each time the directory is
opened. This approach has been tried with
good results by Ian Dowse[7].

Although the index can be maintained incre-
mentally it must be initially constructed in its
entirety so that the file creation operation can



Ottawa Linux Symposium 2002 433

provide the necessary guarantee of uniqueness.
This gives rise to two problems. First, starting
with a cold cache the first access to any direc-
tory forces all blocks of the directory be read,
even if only a single entry needs to be accessed.
Thus, randomly accessing files in a large vol-
ume containing a large number of directories
will be significantly slower than with a persis-
tent index, until the cache has been fully ini-
tialized. This could visibly affect latency for an
application such as a web server. Second, there
is the requirement to cache hash tables for all
directories accessed. It is not difficult to con-
struct a case where a single file is accessed in
each directory of a volume, cyclically. With a
sufficiently large volume this must cause cache
thrashing. Either of these problems could be
exploited by a malicious user, and either could
cause spikes of performance degradation on
certain applications.

An advantage of the cached index approach
is that the implementor is relieved of respon-
sibility for maintaining structural compatibil-
ity of the index format across future revi-
sions. A persistent index can be added at
a later date, buying time to study and per-
fect design alternatives. The disadvantages of
a cached index—cache thrashing and latency
problems—do not affect the common cases un-
duly. Most users will be pleased with the af-
forded performance increase as compared to
linear directory searching. However, if a per-
sistent index design is available which per-
forms well and does not have the disadvantages
of a cached index, then it is hard to see why it
should not be adopted.

In summary, the cached index approach is con-
sidered to be a worthwhile acceleration strat-
egy, the value of which lies in providing per-
formance enhancement for common cases over
the short term.

5 Hashing

Hashing, in its specific application to directory
indexing, is a subject to which an entire paper
should be devoted. Here, I will merely touch
on a few of the relevant details.

The most important goal of a hash function is
to distribute the output values across the out-
put range. Secondary goals are speed and com-
pactness.

Uniformity of distribution is especially impor-
tant to the HTree algorithm. A nonuniform
hash function could lead to very uneven split-
ting of the hash key space, which could dra-
matically increase the danger of directory frag-
mentation. It should be noted that some di-
rectory index designers have sought to exploit
nonrandomness in hash functions, with a view
to improving cache coherency for operations
applied across entire directories. It is my opin-
ion that such a goal is difficult to attain and
in any event imposes a needless burden on the
user. A better strategy is design the directory
operations to be essentially as efficient with a
random hash as with a favorably chosen non-
random hash.

As part of the development process of the
HTree indexing code I examined many hash
algorithms, with the assistance of a number
of others. Surprisingly, I found most hash al-
gorithms in common use to be flawed in fun-
damental ways. The most common flaw I
found is a reliance on randomness in the in-
put string for randomness of the resulting hash
value. When tested with nonrandom input
strings such as names varying only in their last
few characters, such hash function tend to pro-
duce very poorly distributed results. Unfortu-
nately, nonrandom strings are all too common
in directory index applications.

As anad hoctest of the effectiveness of var-
ious hash functions I implemented a small



Ottawa Linux Symposium 2002 434

userspace program that creates a large number
of directory entries with nonrandom names;
specifically, names that are identical in their
first N characters, with a linearly increasing
counter appended. After creating the entries
I computed statistics on the leaf nodes to de-
termine how evenly filled they were. In gen-
eral, only one statistic matters: average full-
ness. In theory, perfectly uniformly distributed
hash values would result in all leaf nodes being
75% full. In practice, I have seen as high as
71% average fullness and as low as 50%, the
worst possible result.

As a result of this testing process I made the
following empirical observations:

• If any step in a hash algorithm loses in-
formation then a final “mixing” step that
attempts to improve randomness cannot
repair the damage, and the result will be
a poor distribution. The hash algorithm
must attempt to use all information in the
input string as fairly as possible.

• Where the hash value is built using a byte
at a time from the input string, it is desir-
able that each byte affect the full range of
bits of the intermediate result.

• CRC32 produced relatively poorly dis-
tributed results, apparently by design: it
is not supposed to produce uniformly dis-
tributed results, but to detect bursts of bit
errors.

• The best performing algorithms where
based on theoretically sound pseudoran-
dom generators, where at each step the
random value is combined with a portion
of the input string and used as the seed
value for the next step.

After a number of marginally succesful exper-
iments I hit on the idea of using a linear shift

feedback register to generate a pseudo-random
sequence to combine progressively with the
input string. At each step, a character is
taken from the input string, multiplied by a
relatively prime constant andxored with the
current value of the pseudorandom sequence,
which forms the seed for the next step. What-
ever its theorectical basic, or lack thereof, this
hash function produced very good and uniform
results.

Later I invested some time surveying hash
functions from the literature and around the
web. None that I tested was able to outper-
form my early effort, to which I gave the name
“dx_hack_hash”. Interestingly, the hash func-
tion that came nearest in its ability to generate
consistently uniform random results was ob-
tained from the source code of Larry McVoy’s
BitKeeper source code management system. It
too, is based on a pseudo-random number gen-
erator, although of a slightly different kind.
The performance of various hash functions and
associated theorectical basis needs to be inves-
tigated further.

The HTree index currently relies on the
dx_hack_hash hash function. It is necessary
to subject this apparently well performing hash
function to rigorous testing before the Ext2
HTree directory extension enters production
use, because, in a sense, the hash function re-
ally forms part of the ondisk data structure. So
it must perform well right from the start.

To accomodate the possibility that the initially
adopted hash function might prove to be in-
adequate in the long run, either because weak
spots in its performance are discovered or a
superior hash function is developed, a simple
scheme was devised whereby a new hash func-
tion could be added to the HTree code at a
later date, and the old one retained to be used
with any directories originally created with that
hash. The newly incorporated hash function



Ottawa Linux Symposium 2002 435

would assigned an ID number, one higher than
the hash function before it, and each directory
created thereafter would have the ID of the new
hash function recorded in its header, so that
any subsequent accesses to the same directory
would use the same hash function.

Security: Guarding Against Hash Attacks

Modern computer systems must be proof not
only against failure in normal course of oper-
ation, but when manipulated by a determined
attacker with malicious intent. Where a hash
algorithm is being used, if the attacker knows
the hash algorithm then they might be able to
induce a system to create a large number of di-
rectory entries all hashing to the same value,
thus forcing long linear searches in the direc-
tory operations. It is conceivable that an ef-
fective denial of service attack could be devel-
oped by this means. Or perhaps the attacker
would be able to fragment an HTree directory
intentionally by creating a series of names all
hashing to a given value until the block splits,
then deleting the names and repeating with a
new series hashing to an immediately adjacent
value.

It turned out to be possible to devise a method
that prevents an attacker from predicting the
hash values of strings, even if the attacker has
access to the source code and knows the al-
gorithm. This method relies on the hash al-
gorithm having at least one variable parame-
ter that can be randomly generated at the time
the directory is first created. This generated
parameter is stored in the root index block
and used for every operation on that directory.
Since the attacker cannot predict the value of
the random parameter, they cannot carry out
the attack.

It is open for consideration whether this level
of paranoia is justified.

6 Further Work

Further work is planned in number of areas in-
cluding coalescing of partially empty directory
blocks, improvements to cache efficiency for
directory traversal operations on very large di-
rectories.

Coalescing

Traditionally, Ext2 has never performed any
kind of coalescing on partially empty directory
blocks. On the other hand, Ext2 directories are
seldom very large, in part due to its poor per-
formance on large directories. The larger di-
rectories made practical by efficient indexing
make the issue of coalescing more important.

Coalescing presents a problem in that it is an
inherently nonlocal operation. It is not desir-
able to impose a requirement of examining sev-
eral neighboring blocks at each deletion step
to see if they can be coalesced. I felt that the
operation could be made much more efficient
by recording some information about the full-
ness of each leaf block, directly in the index. It
would then be possible to test neighbor blocks
for suitability for coalescing without having
the leaf blocks themselves in memory. To be
effective, just a few bits of descriptive infor-
mation would be needed. At the same time, it
is clear that 32 bits is a far larger range than
will ever be required for the logical blocks of a
directory. Accordingly, I set aside the top 8 bits
to be used as hints to help accelerate directory
block coalescing, should this feature be imple-
mented.

For forward compability these high order bits
are masked off by the current code. This
means that, should a volume with indexes cre-
ated by a later version of the indexing code
be remounted by an earlier version that knows
nothing about coalescing, the advisory bits will
simply be ignored. The later code will have to



Ottawa Linux Symposium 2002 436

accommodate the possibility that the advisory
bits may be wrong, but since this is just an op-
timization that does not present a serious prob-
lem.

Coalescing applies to the hash bucket divisions
as well as to the data of leaf blocks. In other
words, if enough insertions and deletions were
performed in a directory the hash space could
be cut into many small fragments. In turn, leaf
blocks corresponding to the small fragments of
hash space would likely be underfilled. This
could lead to significant growth in the size of
a directory. In practice, this has not been ob-
served. Accordingly, further work on coalesc-
ing has been deferred for the time being.

Cache Efficiency

Tests using a directory of one million files on a
machine with 128 MB of memory showed that
mass file deletion was slower than mass file
creation by roughly a factor of four, whereas
for smaller directories (below a few hundred
thousand entries) deletion was roughly as fast
as creation. After some investigation the differ-
ence was found to be due to the mismatch be-
tween the storage order of directory entries and
inodes. Inodes are 128 byte records, packed 32
per 4K block. During creation, inode numbers
tend to be allocated sequentially so that after
each inode blocks fills completely it is never
referenced again. On the other hand, mass
deletion is performed in the order in which
directory entries are stored in directory leaf
blocks. This is random by design. Unfortu-
nately, each delete operation requires not only
that the directory entry be cleared but that the
inode be marked as deleted as well. Thus, the
inode table blocks are touched in random or-
der. This does not present a problem if suf-
ficient cache is available, but if that is not the
case then sometimes a block with undeleted in-
odes will have to be written out to make room
for some other block on which an inode is to be

deleted. In other words, thrashing will result.

To confirm this theory I wrote a test program
that would first read all the directory entries,
sort them by inode number, then delete then
in the sorted order. The thrashing effects dis-
appeared. While this served to prove the the
problem had been correctly identified, it is not
a practical solution since we cannot in general
control the order in which user programs will
carry out mass deletion: it will normally be in
the order that directory entries are retrieved via
a readdir operation. The source of the problem
thus identified, it became apparent that not only
deletion, but any directory traversal involving
inode operations would be affected.

Next I wished to establish the worst case per-
formance impact of this type of thrashing. This
is obtained when every single deletion requires
two inode table block disk transfers, resulting
in a 32 times increase in IO operations. This
worst case result can only be approached if
available cache memory is very small in rela-
tionship to directory size, which might in turn
be due to competition for cache from parallel
processes.

Inode table thrashing can be controlled by
adding memory. For example, the inode ta-
ble blocks for one million files will fit comfort-
ably in cache on a machine with 256 MB of
memory, assuming half the memory was avail-
able for caching. At worst, the slowdown ob-
served is only linear, not at all comparable to
the quadratic slowdown caused by linear direc-
tory searching. However, cache efficiency re-
mains a desirable goal. I carried out prelimi-
nary analysis work suggesting it is possible to
reduce the cache footprint logarithmically, by
carefully controlling the allocation policy of
inode numbers. This approach is attractive in
that it does not require changes in the underly-
ing directory index structure. It is considered
practical to defer this work for the time being.



Ottawa Linux Symposium 2002 437

For completeness, I examined alternative in-
dex designs to determine whether there exists
an equivalently good indexing strategy which
is not susceptible to inode table thrashing for
common operations. Such an index would nec-
essarily record directory entries in the same
order as the corresponding inodes. Recalling
that the HTree design uses one index entry per
block, this hypothetical design would multi-
ply the number of index entries by the aver-
age number of directory entries per block, a
factor of 200, conservatively. Since index en-
tries are small, this is not as bad as it sounds.
In effect, this would increase the size of the
index to somewhat less than half the size of
the leaf blocks, in total. Again this is not as
bad as it sounds, because there would be no
slack space in the leaf blocks. This would
narrow the HTree method’s size advantage to
about 30 percent. However, the individual-
index method imposes a new requirement: free
space in each leaf block must be tracked. Some
kind of persistent free space map would be
needed and updating this map would require
extra IO operations. The speed of fsck would
be decreased measurably by the requirement
to examine more index blocks. These size
and performance disadvantages considered to-
gether leads to the conclusion that the fine-
grained index approach’s cache advantage in
mass directory operations is not sufficient rea-
son to prefer it over the method presented in
this paper.

Nonlocal Splitting

A with HTrees, BTree blocks must be split as
they become full. A B*Tree is a BTree vari-
ant that reduces the amount of unused space in
split blocks by splitting groups of two blocks
into three. This leaves each block approxi-
mately two thirds full, compared to half full in
a normal BTree.

This same technique could be used with an

HTree, and in fact the implementation is sim-
pler because rebalancing is not required. The
expectation would be to improve average block
fullness from 3/4 to 5/6. It is for consideration
whether this improvement warrants the addi-
tional complexity and slightly increased cost of
the split operation.

7 Conclusions

The HTree—a uniform-depth hash-keyed
tree—is a new kind of data structure that
has been employed with apparent success
to implement a directory index extension for
Linux’s Ext2 filesystem. Besides offering good
performance and a simple implementation,
the HTree structure allows Ext2’s traditional
directory file format to be retained, providing
a high degree of both backward and forward
compatibility. After a period of further refine-
ment and testing, it is considered likely that
the HTree directory indexing extension will
become a standard part of Linux’s Ext2 and
Ext3 filesystems.

8 Acknowledgements

My heartfelt thanks to all those who helped
make this work possible, especially:

innominate AG for employing me to help make
Linux better

Uli Luckas for surviving many hours of code
walkthroughs and debugging sessions

Andreas Dilger, for whom no detail was too
unimportant to go uninvestigated

Mathew Wilcox, for being the first to proofread
this paper

Stephen Tweedie for generally being encourag-
ing, knowledgable and an all round nice guy



Ottawa Linux Symposium 2002 438

Ted Ts’o for putting me up to this in the first
place

Anna just for being Anna

9 References

References

[1] Design and Implementation of the Second
Extended Filesystem,
http://e2fsprogs.sourceforge.net

/ext2intro.html

[2] Analysis of the Ext2fs structure,
http://step.polymtl.ca/~ldd

/ext2fs/ext2fs_toc.html

[3] [rfc] Near-constant time directory index
for Ext2,http://search.luky.org

/linux-kernel.2001

/msg00117.html

[4] [RFC] Ext2 Directory Index - File
Structurehttp://lwn.net/2001

/0412/a/index-format.php3

[5] HTree Performance:
http://nl.linux.org/~phillips

/htree/performance.png

[6] Journal File Systems, Juan I. Santos
Florido,
http://www.linuxgazette.com

/issue55/florido.html

[7] BSD Dirhash:
http://groups.yahoo.com/group

/freebsd-hackers/message/62664

[8] XFS White Paper:
http://oss.sgi.com/projects/xfs

/papers/xfs_usenix/index.html

[9] ReiserFS Resources:
http://www.namesys.com/



Proceedings of the
Ottawa Linux Symposium

June 26th–29th, 2002
Ottawa, Ontario

Canada



Conference Organizers

Andrew J. Hutton,Steamballoon, Inc.
Stephanie Donovan,Linux Symposium
C. Craig Ross,Linux Symposium

Proceedings Formatting Team

John W. Lockhart,Wild Open Source, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.


